Transfusion Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA.
Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
Blood. 2020 Jun 4;135(23):2071-2084. doi: 10.1182/blood.2019002227.
Sickle cell disease (SCD) is a monogenic red blood cell (RBC) disorder with high morbidity and mortality. Here, we report, for the first time, the impact of SCD on the bone marrow (BM) vascular niche, which is critical for hematopoiesis. In SCD mice, we find a disorganized and structurally abnormal BM vascular network of increased numbers of highly tortuous arterioles occupying the majority of the BM cavity, as well as fragmented sinusoidal vessels filled with aggregates of erythroid and myeloid cells. By in vivo imaging, sickle and control RBCs have significantly slow intravascular flow speeds in sickle cell BM but not in control BM. In sickle cell BM, we find increased reactive oxygen species production in expanded erythroblast populations and elevated levels of HIF-1α. The SCD BM exudate exhibits increased levels of proangiogenic growth factors and soluble vascular cell adhesion molecule-1. Transplantation of SCD mouse BM cells into wild-type mice recapitulates the SCD vascular phenotype. Our data provide a model of SCD BM, in which slow RBC flow and vaso-occlusions further diminish local oxygen availability in the physiologic hypoxic BM cavity. These events trigger a milieu that is conducive to aberrant vessel growth. The distorted neovascular network is completely reversed by a 6-week blood transfusion regimen targeting hemoglobin S to <30%, highlighting the plasticity of the vascular niche. A better insight into the BM microenvironments in SCD might provide opportunities to optimize approaches toward efficient and long-term hematopoietic engraftment in the context of curative therapies.
镰状细胞病(SCD)是一种单基因红细胞(RBC)疾病,具有高发病率和死亡率。在这里,我们首次报告 SCD 对造血至关重要的骨髓(BM)血管基质的影响。在 SCD 小鼠中,我们发现 BM 血管网络结构紊乱且异常,数量增加的高度迂曲的小动脉占据了大部分 BM 腔,以及碎片化的窦状血管充满了红细胞和髓样细胞的聚集物。通过体内成像,镰状和对照 RBC 在 SCD BM 中具有明显较慢的血管内流动速度,但在对照 BM 中则没有。在 SCD BM 中,我们发现扩展的成红细胞群体中活性氧物质的产生增加,并且 HIF-1α 水平升高。SCD BM 渗出物表现出增加的促血管生成生长因子和可溶性血管细胞黏附分子-1 水平。将 SCD 小鼠 BM 细胞移植到野生型小鼠中重现了 SCD 血管表型。我们的数据提供了 SCD BM 的模型,其中 RBC 流动缓慢和血管阻塞进一步降低了生理缺氧 BM 腔中局部氧气的可用性。这些事件引发了有利于异常血管生长的环境。通过针对血红蛋白 S 将其降至<30%的 6 周输血方案,扭曲的新血管网络完全逆转,突出了血管基质的可塑性。对 SCD 中 BM 微环境的更好了解可能为优化在治愈性治疗背景下实现有效和长期造血植入的方法提供机会。