Suppr超能文献

基于惯性传感器的智能手机实时活动分类——识别坐姿或步行时的滚动、打字和观看视频行为。

REAL-Time Smartphone Activity Classification Using Inertial Sensors-Recognition of Scrolling, Typing, and Watching Videos While Sitting or Walking.

机构信息

Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1010, New Zealand.

School of Computer Science, University of Auckland, Auckland 1010, New Zealand.

出版信息

Sensors (Basel). 2020 Jan 24;20(3):655. doi: 10.3390/s20030655.

Abstract

By developing awareness of smartphone activities that the user is performing on their smartphone, such as scrolling feeds, typing and watching videos, we can develop application features that are beneficial to the users, such as personalization. It is currently not possible to access real-time smartphone activities directly, due to standard smartphone privileges and if internal movement sensors can detect them, there may be implications for access policies. Our research seeks to understand whether the sensor data from existing smartphone inertial measurement unit (IMU) sensors (triaxial accelerometers, gyroscopes and magnetometers) can be used to classify typical human smartphone activities. We designed and conducted a study with human participants which uses an Android app to collect motion data during scrolling, typing and watching videos, while walking or seated and the baseline of smartphone non-use, while sitting and walking. We then trained a machine learning (ML) model to perform real-time activity recognition of those eight states. We investigated various algorithms and parameters for the best accuracy. Our optimal solution achieved an accuracy of 78.6% with the Extremely Randomized Trees algorithm, data sampled at 50 Hz and 5-s windows. We conclude by discussing the viability of using IMU sensors to recognize common smartphone activities.

摘要

通过开发对用户在智能手机上执行的智能手机活动的意识,例如滚动Feed、打字和观看视频,我们可以开发对用户有益的应用程序功能,例如个性化。由于标准智能手机的权限,目前无法直接访问实时智能手机活动,如果内部运动传感器可以检测到这些活动,可能会对访问策略产生影响。我们的研究旨在了解现有智能手机惯性测量单元(IMU)传感器(三轴加速度计、陀螺仪和磁力计)的传感器数据是否可用于对典型的人类智能手机活动进行分类。我们设计并进行了一项研究,该研究使用 Android 应用程序在滚动、打字和观看视频时收集运动数据,同时在坐着和行走以及坐着和行走时的智能手机非使用基线时进行收集。然后,我们训练了一个机器学习(ML)模型来实时识别这 8 种状态的活动。我们研究了各种算法和参数以获得最佳准确性。我们的最佳解决方案使用极端随机树算法在 50Hz 和 5 秒窗口下采集数据,实现了 78.6%的准确率。最后,我们讨论了使用 IMU 传感器识别常见智能手机活动的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ae6/7038357/1822cbdb6f8c/sensors-20-00655-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验