Suppr超能文献

纳米颗粒形状和结构在聚乙烯醇(PVA)生物纳米复合薄膜材料表征中的作用

The Role of Nanoparticle Shapes and Structures in Material Characterisation of Polyvinyl Alcohol (PVA) Bionanocomposite Films.

作者信息

Mousa Mohanad, Dong Yu

机构信息

School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth 6845, Australia.

Shatrah Technical Institute, Southern Technical University, Basra 61001, Iraq.

出版信息

Polymers (Basel). 2020 Jan 25;12(2):264. doi: 10.3390/polym12020264.

Abstract

Three different types of nanoparticles, 1D Cloisite 30B clay nanoplatelets, 2D halloysite nanotubes (HNTs), and 3D nanobamboo charcoals (NBCs) were employed to investigate the impact of nanoparticle shapes and structures on the material performance of polyvinyl alcohol (PVA) bionanocomposite films in terms of their mechanical and thermal properties, morphological structures, and nanomechanical behaviour. The overall results revealed the superior reinforcement efficiency of NBCs to Cloisite 30B clays and HNTs, owing to their typical porous structures to actively interact with PVA matrices in the combined formation of strong mechanical and hydrogen bondings. Three-dimensional NBCs also achieved better nanoparticle dispersibility when compared with 1D Cloisite 30B clays and 2D HNTs along with higher thermal stability, which was attributed to their larger interfacial regions when characterised for the nanomechanical behaviour of corresponding bionanocomposite films. Our study offers an insightful guidance to the appropriate selection of nanoparticles as effective reinforcements and the further sophisticated design of bionanocomposite materials.

摘要

采用三种不同类型的纳米颗粒,即一维的Cloisite 30B粘土纳米片、二维的埃洛石纳米管(HNTs)和三维的纳米竹炭(NBCs),从机械性能、热性能、形态结构和纳米力学行为等方面研究纳米颗粒的形状和结构对聚乙烯醇(PVA)生物纳米复合薄膜材料性能的影响。总体结果表明,由于纳米竹炭具有典型的多孔结构,能够在形成强机械键和氢键的过程中与PVA基体积极相互作用,因此其增强效率优于Cloisite 30B粘土和埃洛石纳米管。与一维的Cloisite 30B粘土和二维的埃洛石纳米管相比,三维的纳米竹炭还具有更好的纳米颗粒分散性以及更高的热稳定性,这归因于在对相应生物纳米复合薄膜的纳米力学行为进行表征时,其具有更大的界面区域。我们的研究为有效选择纳米颗粒作为增强剂以及进一步精密设计生物纳米复合材料提供了有见地的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6072/7077314/186835aacd4e/polymers-12-00264-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验