Poggio G F, Gonzalez F, Krause F
Bard Laboratories of Neurophysiology, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
J Neurosci. 1988 Dec;8(12):4531-50. doi: 10.1523/JNEUROSCI.08-12-04531.1988.
The neural signals in visual cortex associated with positional disparity and contrast texture correlation of binocular images are the subject of this study. We have analyzed the effects of stereoscopically presented luminous bars and of dynamic random-dot patterns on the activity of single neurons in cortical visual areas V1, V2, and V3-V3A of the alert, visually trained rhesus macaque. The interpretation of the results and considerations of possible neural mechanisms led us to recognize 2 functional sets of stereoscopic neurons. (1) A set of neurons, tuned excitatory (T0) or tuned inhibitory (TI), which respond sharply to images of zero or near-zero disparity. Objects at or about the horopter drive the T0 neurons and suppress the TI, while objects nearer and farther have the opposite effects on each type, inhibition of the T0 and excitation of the TI. The activity of these neurons may provide, in a reciprocal way, the definition of the plane of fixation, and the basic reference for binocular single vision and depth discrimination. (2) A second set of neurons includes tuned excitatory at larger crossed or uncrossed disparities (TN/TF) and neurons with reciprocal excitatory and inhibitory disparity sensitivity with cross-over at the horopter (NE/FA). Binocularly uncorrelated image contrast drives these neurons to a maintained level of activity, which shifts, in response to correlated images, toward facilitation or suppression as a function of positional disparity. These neurons may operate in the neural processing leading to stereopsis, both coarse and fine, and also provide signals for the system controlling binocular vergence. These results indicate that cortical visual neurons are binocularly linked to respond to the relative position and contrast of the images over their receptive fields, and also that both these aspects of binocular stimulation may be utilized by the brain as a source of stereoscopic information.
本研究的主题是视觉皮层中与双眼图像的位置视差和对比度纹理相关性相关的神经信号。我们分析了立体呈现的发光条和动态随机点图案对警觉的、经过视觉训练的恒河猴的皮层视觉区域V1、V2和V3 - V3A中单个神经元活动的影响。对结果的解释以及对可能的神经机制的思考使我们识别出两组功能性的立体视觉神经元。(1) 一组神经元,调谐兴奋性 (T0) 或调谐抑制性 (TI),它们对零视差或接近零视差的图像有强烈反应。在或接近水平视野的物体驱动T0神经元并抑制TI神经元,而更近和更远的物体对每种类型有相反的影响,抑制T0神经元并兴奋TI神经元。这些神经元的活动可能以相互的方式提供注视平面的定义,以及双眼单视和深度辨别所需的基本参考。(2) 第二组神经元包括在较大交叉或非交叉视差处调谐兴奋性的 (TN/TF),以及在水平视野处具有交叉的相互兴奋性和抑制性视差敏感性的神经元 (NE/FA)。双眼不相关的图像对比度将这些神经元驱动到一个维持的活动水平,该水平会响应相关图像,根据位置视差向促进或抑制方向转变。这些神经元可能在导致粗略和精细立体视觉的神经处理中起作用,并且还为控制双眼会聚的系统提供信号。这些结果表明,皮层视觉神经元通过双眼连接,以响应其感受野上图像的相对位置和对比度,并且双眼刺激的这两个方面都可能被大脑用作立体视觉信息的来源。