KU Leuven, Soft Matter and Biophysics Unit, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
Phys Chem Chem Phys. 2020 Feb 14;22(6):3512-3519. doi: 10.1039/c9cp05659a. Epub 2020 Jan 29.
Biomolecular conformational transitions are usually modeled as barrier crossings in a free energy landscape. The transition paths connect two local free energy minima and transition path times (TPT) are the actual durations of the crossing events. The simplest model employed to analyze TPT and to fit empirical data is that of a stochastic particle crossing a parabolic barrier. Motivated by some disagreement between the value of the barrier height obtained from the TPT distributions as compared to the value obtained from kinetic and thermodynamic analyses, we investigate here TPT for barriers which deviate from the symmetric parabolic shape. We introduce a continuous set of potentials, that starting from a parabolic shape, can be made increasingly asymmetric by tuning a single parameter. The TPT distributions obtained in the asymmetric case are very well-fitted by distributions generated by parabolic barriers. The fits, however, provide values for the barrier heights and diffusion coefficients which deviate from the original input values. We show how these findings can be understood from the analysis of the eigenvalues spectrum of the Fokker-Planck equation and highlight connections with experimental results.
生物分子构象转变通常被建模为自由能景观中的势垒穿越。过渡路径连接两个局部自由能最小值,过渡路径时间 (TPT) 是穿越事件的实际持续时间。分析 TPT 和拟合经验数据最简单的模型是随机粒子穿越抛物线势垒的模型。由于从 TPT 分布中获得的势垒高度值与从动力学和热力学分析中获得的高度值之间存在一些分歧,我们在这里研究偏离对称抛物线形状的势垒的 TPT。我们引入了一组连续的势,从抛物线形状开始,可以通过调整单个参数使其变得越来越不对称。在不对称情况下获得的 TPT 分布可以很好地拟合由抛物线势垒生成的分布。然而,这些拟合提供的势垒高度和扩散系数值与原始输入值存在偏差。我们展示了如何从福克-普朗克方程本征值谱的分析中理解这些发现,并强调与实验结果的联系。