Suppr超能文献

蛋白质折叠动力学作为自由能面上的扩散:速率方程项、跃迁途径以及单分子光子轨迹分析。

Protein Folding Dynamics as Diffusion on a Free Energy Surface: Rate Equation Terms, Transition Paths, and Analysis of Single-Molecule Photon Trajectories.

机构信息

NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, 95343 California, United States.

Chemistry and Chemical Biology Graduate Program, University of California, Merced, 95343 California, United States.

出版信息

J Phys Chem B. 2021 Nov 18;125(45):12413-12425. doi: 10.1021/acs.jpcb.1c05401. Epub 2021 Nov 4.

Abstract

The rates of protein (un)folding are often described as diffusion on the projection of a hyperdimensional energy landscape onto a few (ideally one) order parameters. Testing such an approximation by experiment requires resolving the reactive transition paths of individual molecules, which is now becoming feasible with advanced single-molecule spectroscopic techniques. This has also sparked the interest of theorists in better understanding reactive transition paths. Here we focus on these issues aiming to establish (i) practical guidelines for the mechanistic interpretation of transition path times (TPT) and (ii) methods to extract the free energy surface and protein dynamics from the maximum likelihood analysis of photon trajectories (MLA-PT). We represent the (un)folding rates as diffusion on a 1D free energy surface with the FRET efficiency as a reaction coordinate proxy. We then perform diffusive kinetic simulations on surfaces with two minima and a barrier, but with different shapes (curvatures, barrier height, and symmetry), coupled to stochastic simulations of photon emissions that reproduce current SM-FRET experiments. From the analysis of transition paths, we find that the TPT is inversely proportional to the barrier height (difference in free energy between minimum and barrier top) for any given surface shape, and that dividing the TPT into climb and descent segments provides key information about the barrier's symmetry. We also find that the original MLA-PT procedure used to determine the TPT from experiments underestimates its value, particularly for the cases with smaller barriers (e.g., fast folders), and we suggest a simple strategy to correct for this bias. Importantly, we also demonstrate that photon trajectories contain enough information to extract the 1D free energy surface's shape and dynamics (if TPT is >4-5-fold longer than the interphoton time) using the MLA-PT directly implemented with a diffusive free energy surface model. When dealing with real (unknown) experimental data, the comparison between the likelihoods of the free energy surface and discrete kinetic three-state models can be used to evaluate the statistical significance of the estimated free energy surface.

摘要

蛋白质(不)折叠的速率通常被描述为在高维能量景观的投影上扩散到几个(理想情况下一个)序参量。通过实验来检验这种近似需要解析单个分子的反应过渡路径,这现在随着先进的单分子光谱技术的发展成为可能。这也激发了理论家们对更好地理解反应过渡路径的兴趣。在这里,我们专注于这些问题,旨在建立(i)用于解释过渡路径时间(TPT)的机制的实用指南,以及(ii)从光子轨迹的最大似然分析(MLA-PT)中提取自由能表面和蛋白质动力学的方法。我们将(不)折叠速率表示为扩散在 1D 自由能表面上,其中 FRET 效率作为反应坐标的代理。然后,我们在具有两个最小值和一个势垒的表面上进行扩散动力学模拟,但具有不同的形状(曲率、势垒高度和对称性),并与光子发射的随机模拟相结合,这些模拟再现了当前的 SM-FRET 实验。从过渡路径的分析中,我们发现对于任何给定的表面形状,TPT 与势垒高度(最小值和势垒顶部之间的自由能差)成反比,并且将 TPT 划分为爬升和下降段为势垒的对称性提供了关键信息。我们还发现,用于从实验中确定 TPT 的原始 MLA-PT 程序会低估其值,特别是对于较小势垒的情况(例如,快速折叠体),并且我们建议了一种简单的策略来纠正这种偏差。重要的是,我们还证明,光子轨迹包含足够的信息,可以使用直接与扩散自由能表面模型一起实现的 MLA-PT 来提取 1D 自由能表面的形状和动力学(如果 TPT 比光子间时间长 4-5 倍以上)。在处理真实(未知)实验数据时,可以比较自由能表面和离散动力学三态模型的似然度,以评估估计的自由能表面的统计显著性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验