Kumar Vijith, Xu Yijue, Leroy César, Bryce David L
Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
Phys Chem Chem Phys. 2020 Feb 19;22(7):3817-3824. doi: 10.1039/c9cp06267j.
We report a multifaceted experimental and computational study of three self-complementary chalcogen-bond donors as well as a series of seven chalcogen bonded cocrystals. Bis(selenocyanatomethyl)benzene derivatives were cocrystallized with various halide salts (Bu4NCl, Bu4NBr, Bu4NI) and nitrogen-containing Lewis bases (4,4'-bipyridine and 1,2-di(4-pyridyl)ethylene). Three new single-crystal X-ray structures are reported. 77Se solid-state nuclear magnetic resonance spectroscopic study of a series of cocrystals establishes correlations between the NMR parameters of selenium and the local ChB geometry. For example, the 77Se isotropic chemical shift generally decreases on cocrystal formation. Diagnostic 13C chemical shifts are also described. In addition, all the chalcogen bonded cocrystals and pure tectons are investigated by Raman and IR spectroscopy techniques. Characteristic red shifts of the NC-Se stretching band upon cocrystal formation on the order of 10 to 20 cm-1 are observed, which provides a distinct signature of the chalcogen bond involving selenocyanates. The 125Te chemical shift tensor and X-ray structure of chalcogen-bonded tellurocyanatomethylbenzene are also reported. Insights into the connection between the electronic structure of the chalcogen bond and the experimentally measured 77Se chemical shift tensors are afforded through a natural localized molecular orbital density functional theory analysis. For the systems studied here, the lack of a very strong a correlation between experimental and DFT-computed 77Se chemical shift tensors leads to the conclusion that many structural features likely influence their ultimate values; however, computations on model systems reveal that the ChB alone produces consistent and predictable effects (e.g., the chalcogen chemical shift decreases as the chalcogen bond is shortened).
我们报告了对三种自互补硫族元素键供体以及一系列七种硫族元素键合共晶体进行的多方面实验和计算研究。双(硒氰酸甲酯基)苯衍生物与各种卤化物盐(四丁基氯化铵、四丁基溴化铵、四丁基碘化铵)和含氮路易斯碱(4,4'-联吡啶和1,2-二(4-吡啶基)乙烯)共结晶。报道了三种新的单晶X射线结构。对一系列共晶体进行的77Se固态核磁共振光谱研究建立了硒的NMR参数与局部硫族元素键几何结构之间的相关性。例如,共晶体形成时77Se各向同性化学位移通常会降低。还描述了具有诊断性的13C化学位移。此外,通过拉曼光谱和红外光谱技术对所有硫族元素键合共晶体和纯构造单元进行了研究。观察到共晶体形成时NC-Se伸缩带的特征性红移,幅度约为10至20 cm-1,这为涉及硒氰酸盐的硫族元素键提供了独特的特征。还报道了硫族元素键合碲氰酸甲酯基苯的125Te化学位移张量和X射线结构。通过自然定域分子轨道密度泛函理论分析,深入了解了硫族元素键的电子结构与实验测量的77Se化学位移张量之间的联系。对于此处研究的体系,实验和DFT计算的77Se化学位移张量之间缺乏非常强的相关性,这导致得出结论,许多结构特征可能会影响它们的最终值;然而,对模型体系的计算表明,仅硫族元素键就会产生一致且可预测的影响(例如,随着硫族元素键缩短,硫族元素化学位移会降低)。