School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, TAS 7001, Australia.
Org Biomol Chem. 2020 Feb 14;18(6):1117-1129. doi: 10.1039/c9ob02650a. Epub 2020 Jan 29.
Density functional theory (DFT) at the SMD/M06-2X/def2-TZVP//SMD/M06-2X/LANL2DZ(d),6-31G(d) level was used to explore the regioselective double oxidation of phenols by a hypervalent iodine(v) reagent (IBX) to give o-quinones. The oxidative dearomatization commences with the ligand exchange between IBX and phenol, yielding a phenolate complex, followed by the first redox process, which reduces iodine(v) to iodine(iii). Both the processes (the ligand exchange and the first redox reaction) were found to be mediated by a less stable isomer of iodine(v) species. We found that although the first redox process preferentially proceeds via an associative pathway, an electron withdrawing substituent on the phenol ring decreases its accessibility. The inspection of the electronic structure of the redox transition state indicates that the phenolate involved in the iodine(v) reduction has some phenoxenium character. The intrinsic stability of a phenoxenium ion is calculated to be highly sensitive to the substituent on the phenol ring. Since the electron withdrawing substituents considerably decrease the stability of the phenoxenium, they render the iodine(v) to iodine(iii) reduction energy consuming. Once the first redox step has completed, a catechol-iodine(iii) complex is formed, from which the second redox process produces the final o-quinone product via a carboxylate-assisted transition structure. This transition structure gains stability by hydrogen bond interaction between the catechol OH and carboxylate group. Such an interaction results in the phenolate not having any phenoxenium character in the transition structure, thus making the activation barrier to the second redox step independent from the substituent on the phenol ring.
密度泛函理论(DFT)在 SMD/M06-2X/def2-TZVP//SMD/M06-2X/LANL2DZ(d),6-31G(d)水平上被用来探索高价碘(v)试剂(IBX)对苯酚的区域选择性双氧化生成邻醌。氧化脱芳构化始于 IBX 和苯酚之间的配体交换,生成酚盐配合物,然后进行第一次氧化还原过程,将碘(v)还原为碘(iii)。这两个过程(配体交换和第一次氧化还原反应)都被发现是由一种不太稳定的碘(v)物种的异构体介导的。我们发现,虽然第一次氧化还原过程优先通过缔合途径进行,但苯酚环上的吸电子取代基会降低其可及性。对氧化还原过渡态的电子结构的检查表明,涉及碘(v)还原的酚盐具有一些酚氧鎓特征。酚氧鎓离子的固有稳定性被计算为对苯酚环上取代基高度敏感。由于吸电子取代基大大降低了酚氧鎓的稳定性,它们使得碘(v)到碘(iii)的还原消耗能量。一旦完成了第一个氧化还原步骤,就形成了一个邻苯二酚-碘(iii)配合物,从该配合物中,第二个氧化还原过程通过羧酸盐辅助的过渡结构生成最终的邻醌产物。这个过渡结构通过邻苯二酚 OH 和羧酸盐基团之间的氢键相互作用获得稳定性。这种相互作用导致在过渡结构中酚盐没有任何酚氧鎓特征,从而使得第二个氧化还原步骤的活化能与苯酚环上的取代基无关。