Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
Laboratory for Biomaterials, Materials Research Center, Indian Institute of Science, Bangalore, India.
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2320-2343. doi: 10.1002/jbm.b.34567. Epub 2020 Jan 29.
The development of polymeric nanocomposites for biomedical applications remains a major challenge in terms of tailored addition of nanoparticles to realize the simultaneous enhancement of fracture resistance and cell/blood compatibility. To address this, the present work has been planned to determine whether small addition of surface functionalized multiwalled-carbon-nanotube, MWCNT (<1.5 wt%) and egg-shell derived nanosized hydroxyapatite, nHA (<10 wt%) to ultrahigh-molecular-weight-polyethylene (UHMWPE) can significantly improve the physical properties as well as biocompatibility. The difference in mouse osteoblast and human mesenchymal stem cell (hMSc) proliferation has been validated using both the monolithic composite and a trilayered composite with two different UHMWPE nanocomposites on either face with pure polymer at the middle. The combination of rheology and micro-CT with fractography reveals the homogeneous dispersion of nanofillers, leading to mechanical property enhancement. The quantitative analysis of cell viability and cell spreading by immunocytochemistry method, using vinculin and vimentin expression, establish significant cytocompatibility with hMSc and osteoblast cells onto the trilayer hybrid nanobiocomposite substrates. The hemocompatibility of the investigated composites under the controlled flow of rabbit blood in a microfluidic device reveals the signature of reduced thrombogenesis with reduction of platelet activation on UHMWPE nanocomposite w.r.t. unreinforced UHMWPE. An attempt has been made to discuss the blood compatibility results in the backdrop of the bovine serum albumin adsorption kinetics. Summarizing, the present study establishes that the twin requirement of mechanical property and cyto/hemo-compatibility can be potentially realized in developing trilayer composites in UHMWPE-nHA-MWCNT system.
用于生物医学应用的聚合纳米复合材料的发展在定制添加纳米颗粒方面仍然是一个主要挑战,以实现断裂阻力和细胞/血液相容性的同时增强。为了解决这个问题,本工作旨在确定是否可以通过少量添加表面功能化多壁碳纳米管(MWCNT,<1.5wt%)和蛋壳衍生的纳米级羟基磷灰石(nHA,<10wt%)来显著改善超高分子量聚乙烯(UHMWPE)的物理性能和生物相容性。使用整体复合材料和具有两种不同 UHMWPE 纳米复合材料的三层复合材料,在中间为纯聚合物,在两面均为纳米复合材料,验证了小鼠成骨细胞和人间充质干细胞(hMSC)增殖的差异。流变学和微 CT 与断口形貌学的结合表明纳米填料的均匀分散,从而提高了机械性能。通过使用 vinculin 和 vimentin 表达的免疫细胞化学方法对细胞活力和细胞扩散进行定量分析,在三层杂交纳米生物复合材料基底上,建立了 hMSC 和成骨细胞的显著细胞相容性。在微流控装置中控制兔血流动下,研究复合材料的血液相容性显示出血小板活化减少的血栓形成减少的特征,与未增强的 UHMWPE 相比,血小板在 UHMWPE 纳米复合材料上的活化减少。尝试根据牛血清白蛋白吸附动力学讨论血液相容性结果。总之,本研究表明,在开发 UHMWPE-nHA-MWCNT 系统中的三层复合材料时,可以潜在地实现机械性能和细胞/血液相容性的双重要求。