Grup d'Enginyeria Cellular i Bioprocés, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain.
J Proteome Res. 2020 Mar 6;19(3):1085-1099. doi: 10.1021/acs.jproteome.9b00601. Epub 2020 Feb 7.
The production of virus-like particles (VLPs) has gained importance over the last few years owing to the benefits they provide compared to conventional vaccines. The biopharmaceutical industry is currently searching for safer candidates based on VLPs for new and existing vaccines and implementing new methods of manufacturing, thus allowing a more sustainable, effective, and species-specific production. Despite achieving lower yields compared to traditional platforms, the use of mammalian cells provides the right post-translational modifications, and consequently, the intensification of bioprocesses using mammalian cell platforms has become a matter of pressing concern. One of the methods subjected to intensification is transient gene expression, which has been proven to be highly effective regarding VLP production for preclinical or even clinical trials. In this work, a multiplexed quantitative proteomic approach has been applied to study the molecular characteristics of HEK293 cell cultures when growing at cell densities higher than 4 × 10 cells/mL and to study the effects related to cell transfection and VLP production. The obtained results revealed a set of functional and metabolic profiles of HEK293 under these three different conditions that allowed the identification of physiological bottlenecks regarding VLP production. Regarding the cell density effect, molecular alterations in the cell biology were proposed to help explain the difficulty for the cells to be transfected at higher densities. In addition, an overall disruption of cellular homeostasis after transfection was observed based on altered biological processes, and after identifying potential pathways liable to be optimized via metabolic engineering, different solutions were proposed to improve VLP production.
近年来,由于病毒样颗粒 (VLP) 相较于传统疫苗具有诸多优势,因此其生产备受关注。目前,生物制药行业正在寻找基于 VLP 的新型和现有疫苗的更安全候选物,并实施新的制造方法,从而实现更可持续、更有效和更具物种特异性的生产。尽管与传统平台相比,产量较低,但哺乳动物细胞的使用可提供正确的翻译后修饰,因此,强化使用哺乳动物细胞平台的生物工艺已成为当务之急。正在强化的方法之一是瞬时基因表达,该方法在 VLP 生产方面非常有效,可用于临床前甚至临床试验。在这项工作中,应用了一种多重定量蛋白质组学方法来研究高于 4×10^6 个细胞/mL 的细胞密度下 HEK293 细胞培养物的分子特征,并研究与细胞转染和 VLP 生产相关的影响。获得的结果揭示了 HEK293 在这三种不同条件下的一系列功能和代谢特征,有助于确定 VLP 生产中的生理瓶颈。关于细胞密度的影响,提出了细胞生物学中的分子变化,以帮助解释在较高密度下转染细胞的困难。此外,还观察到转染后细胞内稳态的全面破坏,这是基于改变的生物学过程,在确定可能通过代谢工程进行优化的潜在途径后,提出了不同的解决方案来提高 VLP 的产量。