Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia.
NanoTemper Technologies Rus, Saint Petersburg, Russia.
PLoS Biol. 2020 Jan 29;18(1):e3000593. doi: 10.1371/journal.pbio.3000593. eCollection 2020 Jan.
During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection.
在宿主定植期间,细菌利用(p)ppGpp 通过对 DNA、RNA 和蛋白质合成的多效作用来重塑其蛋白质组。在这里,我们阐明了起始核糖体如何感知细胞内鸟苷核苷酸池,并调节向蛋白质合成的进展。我们的研究结果表明,三磷酸鸟苷 (GTP) 和 ppGpp 对结合 30S 起始因子 IF2 的抑制浓度的亲和力取决于编程的 mRNA。TufA mRNA 增强了 30S 复合物对 GTP 的亲和力,从而提高了 ppGpp 的耐受性,并允许有效的蛋白质合成。相反,InfA mRNA 允许 ppGpp 与 GTP 竞争 IF2,从而使 30S 复合物停滞。TufA mRNA 的结构建模和生化分析揭示了一个由两个连续发夹组成的翻译起始增强子(SETI),该发夹紧邻翻译起始区(TIR),在生理浓度的鸟苷核苷酸下,很大程度上解释了 ppGpp 的耐受性。此外,我们的研究结果表明,增强 ppGpp 耐受性的机制不仅限于 TufA mRNA,因为在含有 SETI 的 Rnr mRNA 中也发现了类似的 ppGpp 耐受性。最后,我们表明 IF2 可以使用 pppGpp 来促进 30S 起始复合物(IC)的形成,尽管需要更高的因子浓度,并且导致向翻译延伸的转变更慢。总之,我们的数据揭示了蛋白质合成起始的一种新的调控机制,该机制可以耐受生理浓度的 ppGpp,并且细菌可以利用该机制来调节其蛋白质组,作为在严格反应和感染期间发生的营养转变的功能。