Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America.
Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute & School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America.
PLoS Pathog. 2020 Jan 29;16(1):e1007985. doi: 10.1371/journal.ppat.1007985. eCollection 2020 Jan.
Axonal sorting, the controlled passage of specific cargoes from the cell soma into the axon compartment, is critical for establishing and maintaining the polarity of mature neurons. To delineate axonal sorting events, we took advantage of two neuroinvasive alpha-herpesviruses. Human herpes simplex virus 1 (HSV-1) and pseudorabies virus of swine (PRV; suid herpesvirus 1) have evolved as robust cargo of axonal sorting and transport mechanisms. For efficient axonal sorting and subsequent egress from axons and presynaptic termini, progeny capsids depend on three viral membrane proteins (Us7 (gI), Us8 (gE), and Us9), which engage axon-directed kinesin motors. We present evidence that Us7-9 of the veterinary pathogen pseudorabies virus (PRV) form a tripartite complex to recruit Kif1a, a kinesin-3 motor. Based on multi-channel super-resolution and live TIRF microscopy, complex formation and motor recruitment occurs at the trans-Golgi network. Subsequently, progeny virus particles enter axons as enveloped capsids in a transport vesicle. Artificial recruitment of Kif1a using a drug-inducible heterodimerization system was sufficient to rescue axonal sorting and anterograde spread of PRV mutants devoid of Us7-9. Importantly, biophysical evidence suggests that Us9 is able to increase the velocity of Kif1a, a previously undescribed phenomenon. In addition to elucidating mechanisms governing axonal sorting, our results provide further insight into the composition of neuronal transport systems used by alpha-herpesviruses, which will be critical for both inhibiting the spread of infection and the safety of herpesvirus-based oncolytic therapies.
轴突分拣是指将特定货物从细胞体有控制地运送到轴突隔室的过程,对于建立和维持成熟神经元的极性至关重要。为了描绘轴突分拣事件,我们利用了两种神经侵袭性α疱疹病毒。人单纯疱疹病毒 1(HSV-1)和猪伪狂犬病病毒(PRV;猪疱疹病毒 1)已经进化为轴突分拣和运输机制的强大货物。为了有效地进行轴突分拣,并随后从轴突和突触末端退出,子代衣壳依赖于三种病毒膜蛋白(Us7(gI)、Us8(gE)和 Us9),它们与轴突定向的驱动蛋白结合。我们提供的证据表明,兽医病原体伪狂犬病病毒(PRV)的 Us7-9 形成一个三聚体复合物,招募驱动蛋白 Kif1a。基于多通道超分辨率和活 TIRF 显微镜,复合物形成和马达募集发生在反式高尔基体网络。随后,子代病毒颗粒以包膜衣壳的形式进入轴突,作为运输囊泡。使用药物诱导的异二聚化系统人工招募 Kif1a 足以拯救缺乏 Us7-9 的 PRV 突变体的轴突分拣和顺行传播。重要的是,生物物理证据表明,Us9 能够增加 Kif1a 的速度,这是以前未描述的现象。除了阐明控制轴突分拣的机制外,我们的结果还进一步深入了解了α疱疹病毒使用的神经元运输系统的组成,这对于抑制感染的传播和基于疱疹病毒的溶瘤治疗的安全性都至关重要。