Salas Ana, Tortosa Germán, Hidalgo-García Alba, Delgado Antonio, Bedmar Eulogio J, Richardson David J, Gates Andrew J, Delgado María J
Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
Laboratory of Stable Isotopes Biogeochemistry, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Granada, Spain.
Front Microbiol. 2020 Jan 10;10:2915. doi: 10.3389/fmicb.2019.02915. eCollection 2019.
Legume-rhizobia symbiotic associations have beneficial effects on food security and nutrition, health and climate change. Hypoxia induced by flooding produces nitric oxide (NO) in nodules from soybean plants cultivated in nitrate-containing soils. As NO is a strong inhibitor of nitrogenase expression and activity, this negatively impacts symbiotic nitrogen fixation in soybean and limits crop production. In , denitrification is the main process involved in NO formation by soybean flooded nodules. In addition to denitrification, nitrate assimilation is another source of NO in free-living cells and a single domain hemoglobin (Bjgb) has been shown to have a role in NO detoxification during nitrate-dependent growth. However, the involvement of Bjgb in protecting nitrogenase against NO in soybean nodules remains unclear. In this work, we have investigated the effect of inoculation of soybean plants with a mutant on biological nitrogen fixation. By analyzing the proportion of N in shoots derived from N-fixation using the N isotope dilution technique, we found that plants inoculated with the mutant strain had higher tolerance to flooding than those inoculated with the parental strain. Similarly, reduction of nitrogenase activity and expression by flooding was less pronounced in than in WT nodules. These beneficial effects are probably due to the reduction of NO accumulation in flooded nodules compared to the wild-type nodules. This decrease is caused by an induction of expression and activity of the denitrifying NO reductase enzyme in bacteroids. As deficiency promotes NO-tolerance, the negative effect of NO on nitrogenase is partially prevented and thus demonstrates that inoculation of soybean plants with the mutant confers protection of symbiotic nitrogen fixation during flooding.
豆科植物与根瘤菌的共生关系对粮食安全、营养、健康和气候变化具有有益影响。淹水诱导的缺氧会在种植于含硝酸盐土壤中的大豆植株根瘤中产生一氧化氮(NO)。由于NO是固氮酶表达和活性的强抑制剂,这对大豆的共生固氮产生负面影响并限制作物产量。在[具体研究中],反硝化作用是大豆淹水根瘤中NO形成的主要过程。除反硝化作用外,硝酸盐同化是自由生活细胞中NO的另一个来源,并且已证明单域血红蛋白(Bjgb)在依赖硝酸盐生长期间的NO解毒中发挥作用。然而,Bjgb在保护大豆根瘤中的固氮酶免受NO影响方面的作用仍不清楚。在这项工作中,我们研究了用[具体突变体]突变体接种大豆植株对生物固氮的影响。通过使用N同位素稀释技术分析来自固氮的地上部N的比例,我们发现接种[具体突变体]突变株的植株比接种亲本菌株的植株对淹水具有更高的耐受性。同样,淹水导致的固氮酶活性和[相关基因]表达的降低在[具体突变体]根瘤中比在野生型根瘤中不那么明显。这些有益效果可能是由于与野生型根瘤相比,[具体突变体]淹水根瘤中NO积累的减少。这种减少是由类菌体中反硝化NO还原酶的表达和活性诱导引起的。由于[具体突变体]缺陷促进了对NO的耐受性,NO对固氮酶的负面影响得到部分预防,因此表明用[具体突变体]接种大豆植株可在淹水期间保护共生固氮。