Suppr超能文献

固体纳米颗粒在柔软弹性基底上的弹性毛细作用和滚动动力学

Elastocapillarity and rolling dynamics of solid nanoparticles on soft elastic substrates.

作者信息

Tian Yuan, Liang Heyi, Dobrynin Andrey V

机构信息

Department of Polymer Science, University of Akron, Akron, Ohio 44325, USA.

出版信息

Soft Matter. 2020 Mar 4;16(9):2230-2237. doi: 10.1039/c9sm02280e.

Abstract

The motion of nanoparticles on soft surfaces is the result of interplay between capillary, elastic and friction forces. To elucidate the importance of the different contributions controlling nanoparticle rolling dynamics on soft surfaces, we performed molecular dynamics simulations of solid nanoparticles in contact with soft elastic substrates. The nanoparticle motion is initiated by applying a constant force resulting in stationary, steady rolling, and accelerating states, depending on the nanoparticle-substrate work of adhesion, W, the magnitude of the net applied force, F, and the substrate shear modulus G. In the stationary state, the restoring torque produced in the contact area balances the torque due to the external force. The rolling force Fr, determining the crossover to the rolling state, is proportional to the product of the work of adhesion W and nanoparticle size Rp, Fr ∼ WRp. In the steady rolling state, F > Fr, the nanoparticle maintains a constant rolling velocity which is a manifestation of the balance between the rolling friction force and the applied force. The observed scaling relationships between the applied force and nanoparticle velocity reflect a viscoelastic nature of the substrate deformation dynamics. A nanoparticle begins to accelerate when the energy supplied to the nanoparticle exceeds the energy dissipated in the contact area due to viscoelastic substrate deformation. Using these simulation results, we have constructed a diagram of states in terms of the dimensionless parameters F/WRp and W/GRp.

摘要

纳米颗粒在柔软表面上的运动是毛细力、弹力和摩擦力相互作用的结果。为了阐明控制纳米颗粒在柔软表面上滚动动力学的不同因素的重要性,我们对与柔软弹性基底接触的固体纳米颗粒进行了分子动力学模拟。通过施加恒定力来启动纳米颗粒的运动,根据纳米颗粒与基底的粘附功W、外加净力F的大小以及基底剪切模量G,会产生静止、稳定滚动和加速状态。在静止状态下,接触区域产生的恢复扭矩平衡了外力产生的扭矩。决定向滚动状态转变的滚动力Fr与粘附功W和纳米颗粒尺寸Rp的乘积成正比,即Fr ∼ WRp。在稳定滚动状态下,F > Fr,纳米颗粒保持恒定的滚动速度,这体现了滚动摩擦力与外加力之间的平衡。观察到的外加力与纳米颗粒速度之间的标度关系反映了基底变形动力学的粘弹性本质。当提供给纳米颗粒的能量超过由于基底粘弹性变形在接触区域耗散的能量时,纳米颗粒开始加速。利用这些模拟结果,我们根据无量纲参数F/WRp和W/GRp构建了状态图。

相似文献

2
Rolling Dynamics of Nanoscale Elastic Shells Driven by Active Particles.由活性粒子驱动的纳米级弹性壳的滚动动力学
ACS Cent Sci. 2018 Nov 28;4(11):1537-1544. doi: 10.1021/acscentsci.8b00632. Epub 2018 Nov 1.
3
Contact mechanics of nanoparticles.纳米颗粒的接触力学。
Langmuir. 2012 Jul 24;28(29):10881-90. doi: 10.1021/la301657c. Epub 2012 Jul 16.
6
Dynamics of nanoparticle adhesion.纳米颗粒附着的动力学。
J Chem Phys. 2012 Dec 7;137(21):214902. doi: 10.1063/1.4769389.
7
Gluing Interfaces with Soft Nanoparticles.用软纳米颗粒粘合界面。
Langmuir. 2019 Jun 4;35(22):7277-7284. doi: 10.1021/acs.langmuir.9b01307. Epub 2019 May 24.
8
Surface Stresses and a Force Balance at a Contact Line.表面应力和接触线处的力平衡。
Langmuir. 2018 Jun 26;34(25):7497-7502. doi: 10.1021/acs.langmuir.8b01680. Epub 2018 Jun 13.
10
Adhesion of nanoparticles.纳米颗粒的附着。
Langmuir. 2010 Aug 3;26(15):12973-9. doi: 10.1021/la101977c.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验