Belete Melkamu, Engström Olof, Vaziri Sam, Lippert Gunther, Lukosius Mindaugas, Kataria Satender, Lemme Max C
Faculty of Electrical Engineering and Information Technology, Chair of Electronic Devices , RWTH Aachen University , Otto-Blumenthal-Str. 2 , 52074 Aachen , Germany.
AMO GmbH , Otto-Blumenthal-Str. 25 , 52074 Aachen , Germany.
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9656-9663. doi: 10.1021/acsami.9b21691. Epub 2020 Feb 14.
Heterostructures comprising silicon, molybdenum disulfide (MoS), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (-) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS is linearly temperature-dependent for = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS, strain at the Si/MoS interface, or different electron effective masses in Si and MoS, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS. The low barrier formed between Si and MoS and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics.
研究了由硅、二硫化钼(MoS)和石墨烯组成的异质结构的垂直电流传导机制。测量的电流-电压(I-V)特性呈现出与温度相关的不对称电流,表明存在热激活电荷载流子传输。将数据与电流传输模型进行比较并拟合,该模型证实热电子发射是跨器件的负责传输机制。结合实验数据的理论计算表明,对于200 - 300 K,从硅到二硫化钼的异质结势垒与温度呈线性关系,具有正温度系数。这种温度依赖性可能归因于硅和二硫化钼之间带隙差的变化、硅/二硫化钼界面处的应变,或硅和二硫化钼中不同的电子有效质量,导致当电子从硅移动到二硫化钼时,由于态密度变化可能产生熵变。这里展示的硅和二硫化钼之间形成的低势垒以及由此产生的热电子发射,使当前器件有望成为未来高速电子学中基于石墨烯的热电子晶体管的发射极二极管。