State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.
Acc Chem Res. 2020 Feb 18;53(2):470-484. doi: 10.1021/acs.accounts.9b00573. Epub 2020 Jan 30.
In recent decades, research on lignin depolymerization and its downstream product transformation has drawn an enormous amount of attention from academia to industry worldwide, aiming at harvesting aromatic compounds from this abundant and renewable biomass resource. Although the lignin conversion can be traced back to the 1930s and various noncatalytic and catalytic methods have been explored to depolymerize lignin via direct lignin conversion research or lignin models conversion studies, the complexity of the lignin structure, various linkages, the high stability of lignin bonds, and the diverse fragments condensation process make lignin depolymerization to monomers a highly challenging task. For the potential practical utilization of lignin, compared with lignin conversion to liquid fuel with extra H consumption, maintaining the aromatic structure and preparing high-value aromatic chemicals from renewable lignin is more profitable. Therefore, lignin depolymerization to easy-to-handle aromatic monomers with acceptable conversion and selectivity is of great importance. In this article, we present our recent studies on lignin's catalytic conversion to aromatic chemicals. First, we introduce our research on protolignin depolymerization via a fragmentation-hydrogenolysis process in alcohol solvents. Then, focusing on the catalytic cleavage of lignin C-C and C-O bonds, we shed light on a recapitulative adjacent functional group modification (AFGM) strategy for the conversion of lignin models. AFGM strategy begins with the adjacent functional group modification of the target C-C or C-O bond to directly decrease the bond dissociation enthalpy (BDE) of targeted bonds or generate new substrate sites to introduce the cleavage reagent for further conversion. Subsequently, on the basis of these two concepts from AFGM, we summarize our strategies on lignin depolymerization, which highlight the effects of lignin structure, catalyst character, and reaction conditions on the efficiency of strategies. In short, the key point for lignin depolymerization to aromatics is promoting the lignin conversion and restraining the condensation. Compared with the complex research on direct lignin conversion, this bottom-up research approach, beginning with lignin model research, can make the conversion mechanism study clear and provide potential methods for the protolignin/technical lignin conversion. In addition, one of our perspectives for lignin utilization is that the products from lignin conversion can be used as monomers for artificial polymerization, such as the simple phenol (PhOH) and other potential acid compounds, or that lignin derivative molecules can be used to synthesize high-value synthetic building blocks.
近几十年来,全球学术界和工业界都对木质素的解聚及其下游产物转化进行了大量研究,旨在从这种丰富且可再生的生物质资源中提取芳香族化合物。尽管木质素的转化可以追溯到 20 世纪 30 年代,并且已经探索了各种非催化和催化方法通过直接木质素转化研究或木质素模型转化研究来解聚木质素,但是木质素结构的复杂性、各种键合、木质素键的高稳定性以及各种片段的缩合过程使得木质素解聚为单体成为一项极具挑战性的任务。对于木质素的潜在实际利用,与额外消耗 H 的木质素转化为液体燃料相比,从可再生木质素中保持芳香结构并制备高价值的芳香族化学品更有利可图。因此,将木质素解聚为易于处理的芳香族单体,并具有可接受的转化率和选择性,具有重要意义。在本文中,我们介绍了我们最近在木质素的催化转化为芳香族化学品方面的研究。首先,我们介绍了我们在醇溶剂中通过碎片-氢解过程对原木质素解聚的研究。然后,我们重点介绍了木质素 C-C 和 C-O 键的催化断裂,并阐述了一种概括的相邻官能团修饰(AFGM)策略,用于木质素模型的转化。AFGM 策略首先从目标 C-C 或 C-O 键的相邻官能团修饰开始,直接降低目标键的键离解焓(BDE)或生成新的底物位点,以引入用于进一步转化的断裂试剂。随后,基于这两个来自 AFGM 的概念,我们总结了我们在木质素解聚方面的策略,突出了木质素结构、催化剂性质和反应条件对策略效率的影响。简而言之,木质素解聚为芳烃的关键在于促进木质素的转化和抑制缩合。与直接木质素转化的复杂研究相比,这种从木质素模型研究开始的自下而上的研究方法可以使转化机制研究更加清晰,并为原木质素/技术木质素转化提供潜在方法。此外,我们对木质素利用的一个观点是,木质素转化的产物可以用作人工聚合的单体,例如简单苯酚(PhOH)和其他潜在的酸化合物,或者木质素衍生物分子可以用于合成高价值的合成构建块。