Suppr超能文献

多组分轨道优化微扰理论方法:以更低成本逼近耦合簇精度

Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost.

作者信息

Pavošević Fabijan, Rousseau Benjamin J G, Hammes-Schiffer Sharon

机构信息

Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States.

出版信息

J Phys Chem Lett. 2020 Feb 20;11(4):1578-1583. doi: 10.1021/acs.jpclett.0c00090. Epub 2020 Feb 11.

Abstract

Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of the importance of orbital relaxation effects. Herein the variational orbital-optimized coupled cluster with doubles (NEO-OOCCD) method and the orbital-optimized second-order Møller-Plesset perturbation theory (NEO-OOMP2) method with scaled-opposite-spin (SOS) versions are developed and applied to molecular systems in which a proton and all electrons are treated quantum mechanically. The results highlight the importance of orbital relaxation in multicomponent wave function methods. The NEO-SOS'-OOMP2 method, which scales the electron-proton correlation energy as well as the opposite-spin and same-spin components of the electronic correlation energy, is found to achieve nearly the same level of accuracy as the NEO-OOCCD method for proton densities, proton affinities, and optimized geometries. An advantage of the NEO-SOS'-OOMP2 method is that it can be implemented with scaling, where is a measure of the system size. This method will enable future multicomponent wave function calculations of structures, energies, reaction paths, and dynamics for substantially larger chemical systems.

摘要

多组分量子化学方法,如核电子轨道(NEO)方法,允许对电子和原子核进行一致的量子力学处理。由于轨道弛豫效应的重要性,开发计算实用、准确且稳健的多组分波函数方法具有挑战性。本文开发了变分轨道优化耦合簇双激发(NEO - OOCCD)方法和具有反自旋标度(SOS)版本的轨道优化二阶莫勒 - 普列斯特定理微扰理论(NEO - OOMP2)方法,并将其应用于质子和所有电子都进行量子力学处理的分子系统。结果突出了轨道弛豫在多组分波函数方法中的重要性。发现NEO - SOS'-OOMP2方法,它对标度电子 - 质子相关能以及电子相关能的反自旋和同自旋分量进行标度,在质子密度、质子亲和能和优化几何结构方面达到了与NEO - OOCCD方法几乎相同的精度水平。NEO - SOS'-OOMP2方法的一个优点是它可以通过标度实现,其中是系统大小的一种度量。该方法将使未来能够对实质上更大的化学系统进行结构、能量、反应路径和动力学的多组分波函数计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验