Fajen O Jonathan, Brorsen Kurt R
Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA.
J Chem Phys. 2020 May 21;152(19):194107. doi: 10.1063/5.0006743.
The multicomponent orbital-optimized second-order Møller-Plesset perturbation theory (OOMP2) method is the first multicomponent MP2 method that is able to calculate qualitatively accurate protonic densities, protonic affinities, and geometrical changes due to nuclear quantum effects in multicomponent systems. In this study, two approximations of the multicomponent OOMP2 method are introduced in an effort to demonstrate that, in orbital-optimized multicomponent methods, performing the orbital-optimization process with only electron-proton correlation is sufficient to obtain accurate protonic properties. Additionally, these approximations should reduce the computational expense of the multicomponent OOMP2 method. In the first approximation, the first-order wave function is written as a linear combination of one-electron one-proton excitations rather than as a linear combination of one-electron one-proton and two-electron excitations as in the original multicomponent OOMP2 method. Electron-electron correlation is included perturbatively after the orbital-optimization procedure has converged. In the second approach, the first approximation is further modified to neglect all terms in the orbital-rotation gradients that depend on the two-electron molecular-orbital integrals, which, assuming a fixed-sized protonic basis set, reduces the computational scaling for the orbital-optimization iterations to N , where N is a measure of the electronic system size, compared to the N scaling of the original multicomponent OOMP2 method. The second approximation requires one N step after orbital convergence to compute the electron-electron correlation energy. The accuracy of the calculated protonic densities, protonic affinities, and optimized geometries of these approximations is similar or improved relative to the original multicomponent OOMP2 method.
多组分轨道优化二阶莫勒-普列斯特定则微扰理论(OOMP2)方法是首个能够定性准确计算多组分体系中质子密度、质子亲和能以及核量子效应引起的几何变化的多组分MP2方法。在本研究中,引入了多组分OOMP2方法的两种近似方法,以证明在轨道优化的多组分方法中,仅考虑电子-质子关联进行轨道优化过程就足以获得准确的质子性质。此外,这些近似方法应能降低多组分OOMP2方法的计算成本。在第一种近似方法中,一阶波函数写成单电子单质子激发的线性组合,而不是像原始多组分OOMP2方法那样写成单电子单质子激发和双电子激发的线性组合。在轨道优化过程收敛后,微扰地包含电子-电子关联。在第二种方法中,对第一种近似方法进一步修改,忽略轨道旋转梯度中所有依赖于双电子分子轨道积分的项,在假设质子基组大小固定的情况下,与原始多组分OOMP2方法的(N^3)标度相比,这将轨道优化迭代的计算标度降低到(N),其中(N)是电子体系大小的一种度量。第二种近似方法在轨道收敛后需要一步(N)计算来得到电子-电子关联能。相对于原始多组分OOMP2方法,这些近似方法计算得到的质子密度、质子亲和能和优化几何结构的精度相似或有所提高。