Suppr超能文献

基于带有误差的标记物变化点估计疾病发病时间。

Estimating disease onset from change points of markers measured with error.

机构信息

Department of Statistics, Texas A&M University, College Station, TX 77843, USA.

School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia.

出版信息

Biostatistics. 2021 Oct 13;22(4):819-835. doi: 10.1093/biostatistics/kxz068.

Abstract

Huntington disease is an autosomal dominant, neurodegenerative disease without clearly identified biomarkers for when motor-onset occurs. Current standards to determine motor-onset rely on a clinician's subjective judgment that a patient's extrapyramidal signs are unequivocally associated with Huntington disease. This subjectivity can lead to error which could be overcome using an objective, data-driven metric that determines motor-onset. Recent studies of motor-sign decline-the longitudinal degeneration of motor-ability in patients-have revealed that motor-onset is closely related to an inflection point in its longitudinal trajectory. We propose a nonlinear location-shift marker model that captures this motor-sign decline and assesses how its inflection point is linked to other markers of Huntington disease progression. We propose two estimating procedures to estimate this model and its inflection point: one is a parametric method using nonlinear mixed effects model and the other one is a multi-stage nonparametric approach, which we developed. In an empirical study, the parametric approach was sensitive to correct specification of the mean structure of the longitudinal data. In contrast, our multi-stage nonparametric procedure consistently produced unbiased estimates regardless of the true mean structure. Applying our multi-stage nonparametric estimator to Neurobiological Predictors of Huntington Disease, a large observational study of Huntington disease, leads to earlier prediction of motor-onset compared to the clinician's subjective judgment.

摘要

亨廷顿病是一种常染色体显性、神经退行性疾病,运动起始时没有明确的生物标志物。目前,确定运动起始的标准依赖于临床医生的主观判断,即患者的锥体外系体征与亨廷顿病明确相关。这种主观性可能导致错误,而使用客观的、数据驱动的指标来确定运动起始可以克服这一问题。最近对运动信号下降(即患者运动能力的纵向退化)的研究表明,运动起始与该纵向轨迹的拐点密切相关。我们提出了一种非线性位置转移标记模型,该模型可以捕捉这种运动信号的下降,并评估其拐点与亨廷顿病进展的其他标志物的关系。我们提出了两种估计该模型及其拐点的方法:一种是使用非线性混合效应模型的参数方法,另一种是我们开发的多阶段非参数方法。在实证研究中,参数方法对纵向数据的均值结构的正确指定很敏感。相比之下,无论真实的均值结构如何,我们的多阶段非参数方法都能始终产生无偏估计。将我们的多阶段非参数估计器应用于亨廷顿病的大型观察性研究《亨廷顿病的神经生物学预测因子》,与临床医生的主观判断相比,可更早地预测运动起始。

相似文献

本文引用的文献

2
7
Refining the diagnosis of Huntington disease: the PREDICT-HD study.精准诊断亨廷顿病:PREDICT-HD 研究。
Front Aging Neurosci. 2013 Apr 2;5:12. doi: 10.3389/fnagi.2013.00012. eCollection 2013.
9
Smooth random change point models.光滑随机变点模型。
Stat Med. 2011 Mar 15;30(6):599-610. doi: 10.1002/sim.4127. Epub 2010 Dec 16.
10
Huntington's disease: a clinical review.亨廷顿病:临床综述。
Orphanet J Rare Dis. 2010 Dec 20;5:40. doi: 10.1186/1750-1172-5-40.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验