文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心脏舒张期钙的控制:基本机制与功能意义。

The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications.

机构信息

From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom.

出版信息

Circ Res. 2020 Jan 31;126(3):395-412. doi: 10.1161/CIRCRESAHA.119.315891. Epub 2020 Jan 30.


DOI:10.1161/CIRCRESAHA.119.315891
PMID:31999537
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7004450/
Abstract

Normal cardiac function requires that intracellular Ca concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca concentration. It then considers how the control of systolic and diastolic intracellular Ca concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.

摘要

正常的心脏功能要求细胞内 Ca 浓度在舒张期降低到低水平,以使心室能够放松并重新充满血液。心力衰竭通常与心脏舒张功能障碍有关。然而,关于如何调节舒张期细胞内 Ca 浓度知之甚少。本文首先讨论了造成这种无知的原因,然后回顾了控制舒张期细胞内 Ca 浓度的基本机制。接着考虑了收缩期和舒张期细胞内 Ca 浓度的控制是如何紧密相连的。最后,讨论了心力衰竭时发生的变化,以及这些变化如何导致射血分数保留型心力衰竭和射血分数降低型心力衰竭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/ae91f1667b18/res-126-395-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/19b841e808ea/res-126-395-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/b67cff4182a7/res-126-395-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/f0df6d2dd392/res-126-395-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/81719d865d0e/res-126-395-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/ae91f1667b18/res-126-395-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/19b841e808ea/res-126-395-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/b67cff4182a7/res-126-395-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/f0df6d2dd392/res-126-395-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/81719d865d0e/res-126-395-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de6d/7004450/ae91f1667b18/res-126-395-g005.jpg

相似文献

[1]
The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications.

Circ Res. 2020-1-30

[2]
Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction.

Circ Heart Fail. 2017-8

[3]
Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function.

J Appl Physiol (1985). 2012-10-25

[4]
Diastolic myofilament dysfunction in the failing human heart.

Pflugers Arch. 2011-4-13

[5]
Systolic [Ca ] regulates diastolic levels in rat ventricular myocytes.

J Physiol. 2017-7-23

[6]
Cell- and molecular-level mechanisms contributing to diastolic dysfunction in HFpEF.

J Appl Physiol (1985). 2015-11-15

[7]
The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling.

Heart Fail Clin. 2008-1

[8]
Cardiomyocyte Ca homeostasis as a therapeutic target in heart failure with reduced and preserved ejection fraction.

Curr Opin Pharmacol. 2017-4

[9]
Resting ventricular-vascular function and exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study.

Circ Heart Fail. 2014-7

[10]
Load-Independent Systolic and Diastolic Right Ventricular Function in Heart Failure With Preserved Ejection Fraction as Assessed by Resting and Handgrip Exercise Pressure-Volume Loops.

Circ Heart Fail. 2018-2

引用本文的文献

[1]
Dual S100A1 and ARC gene therapy as a treatment for DMD cardiomyopathy.

bioRxiv. 2025-8-23

[2]
A Better Understanding of Atrial-like and Ventricular-like Action Potentials in Stem Cell-Derived Cardiomyocytes: The Underestimated Role of the L-Type Ca Current.

Cells. 2025-8-8

[3]
Aging diastole - root cause for atrial fibrillation and heart failure with preserved ejection fraction.

J Cardiovasc Aging. 2024-12

[4]
Regulation of Na/Ca exchange by cytoplasmic protons modifies intracellular calcium dynamics and the cardiac response to ischemia.

Proc Natl Acad Sci U S A. 2025-7-15

[5]
Interrelations of aortic spring function, cardiovascular disease risk factors, and left ventricular diastolic function: The Framingham Heart Study.

medRxiv. 2025-7-1

[6]
Therapeutic Potential of Local and Systemic Adipose-Derived Mesenchymal Stem Cell Injections in a Rat Model of Experimental Periodontitis: Implications for Cardiac Function.

Int J Mol Sci. 2025-4-23

[7]
Dysregulation of N-terminal acetylation causes cardiac arrhythmia and cardiomyopathy.

Nat Commun. 2025-4-16

[8]
Understanding Diabetic Cardiomyopathy: Insulin Resistance and Beyond.

Heart Int. 2024-12-4

[9]
Construction of Clinical Predictive Models for Heart Failure Detection Using Six Different Machine Learning Algorithms: Identification of Key Clinical Prognostic Features.

Int J Gen Med. 2024-12-28

[10]
Mechanical loading reveals an intrinsic cardiomyocyte stiffness contribution to diastolic dysfunction in murine cardiometabolic disease.

J Physiol. 2024-12

本文引用的文献

[1]
Long-term effects of Na /Ca exchanger inhibition with ORM-11035 improves cardiac function and remodelling without lowering blood pressure in a model of heart failure with preserved ejection fraction.

Eur J Heart Fail. 2019-11-24

[2]
HFpEF-Time to Explore the Role of Genetic Heterogeneity in Phenotypic Variability: New Mechanistic Insights Offer Promise for Personalized Therapies.

Circulation. 2019-11-12

[3]
Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction.

Acta Physiol (Oxf). 2020-3

[4]
Disruption of Ca Homeostasis and Connexin 43 Hemichannel Function in the Right Ventricle Precedes Overt Arrhythmogenic Cardiomyopathy in Plakophilin-2-Deficient Mice.

Circulation. 2019-7-18

[5]
Heart Failure With Preserved Ejection Fraction In Perspective.

Circ Res. 2019-5-24

[6]
Calcium Buffering in the Heart in Health and Disease.

Circulation. 2019-5-14

[7]
Nitrosative stress drives heart failure with preserved ejection fraction.

Nature. 2019-4-10

[8]
Structural features of STIM and Orai underlying store-operated calcium entry.

Curr Opin Cell Biol. 2019-2-1

[9]
Potential Arrhythmogenic Role of TRPC Channels and Store-Operated Calcium Entry Mechanism in Mouse Ventricular Myocytes.

Front Physiol. 2018-12-13

[10]
Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction.

Biochim Biophys Acta Mol Basis Dis. 2018-8-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索