Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior sin número, Coyoacán, Ciudad de México 04510, Mexico.
Anal Chem. 2020 Mar 3;92(5):3888-3895. doi: 10.1021/acs.analchem.9b05390. Epub 2020 Feb 13.
Membrane tension pores determine organelle dynamics and functions, giving rise to physical observables during the cell death process. While fluorescent organelle-targeted probes for specific chemical analytes are increasingly available, subcellular dynamic processes involving not only chemical parameters but also physicochemical and physical parameters are uncommon. Here, we report a mitochondrial chemical probe, named , rationally designed to monitor osmotic effects during transmembrane tension pore formation by using local mitochondrial polarity and a subcellular localization redistribution property of the probe. Utilizing fluorescence spectroscopy, high-resolution confocal imaging, and spectrally resolved confocal microscopy, we provide a new correlation between mitochondrial dynamics and bleb vesicle formation using osmotic pressure stimuli in the cell, where the mitochondrial local polarity was found to drastically increase. The provides a reliable protocol to assess transmembrane pore formation driven by osmotic pressure increments through local polarity variations and is a more robust physicochemical parameter allowing the health and decease status of the cell to be measured.
膜张力孔决定细胞器的动态和功能,在细胞死亡过程中产生物理可观察现象。虽然针对特定化学分析物的荧光细胞器靶向探针越来越多,但不仅涉及化学参数,还涉及物理化学和物理参数的亚细胞动态过程并不常见。在这里,我们报告了一种线粒体化学探针,命名为 ,它是通过利用局部线粒体极性和探针的亚细胞定位再分布特性,合理设计来监测跨膜张力孔形成过程中的渗透效应。利用荧光光谱学、高分辨率共聚焦成像和光谱分辨共聚焦显微镜,我们在细胞中利用渗透压刺激提供了线粒体动力学和泡囊形成之间的新关联,其中发现线粒体局部极性急剧增加。该探针提供了一种可靠的方案,可通过局部极性变化评估由渗透压增加驱动的跨膜孔形成,并可作为更稳健的物理化学参数,用于测量细胞的健康和衰退状态。