Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic.
Mol Phylogenet Evol. 2020 May;146:106735. doi: 10.1016/j.ympev.2020.106735. Epub 2020 Jan 27.
A common hypothesis for the high biodiversity of mountains is the diversification driven by orogeny creating conditions for rapid in situ speciation of resident lineages. The Caucasus is a young mountain system considered as a biodiversity hotspot; however, the origin and evolution of its diversity remain poorly understood. This study focuses on mayflies of the subgenus Caucasiron, one of the most diversified stenotopic mayflies inhabiting various types of streams throughout the Caucasus. Using the time-calibrated phylogeny based on two mitochondrial (COI, 16S) and three nuclear (EF-1α, wg, 28S) gene fragments, we tested the role of Caucasian orogeny in biogeography, diversification patterns, and altitudinal diversification of Caucasiron mayflies. We found that orogeny promoted the lineage diversification of Caucasiron in the Miocene. The highest diversification rate corresponding with the uplift of mountains was followed by a significant slowdown towards the present suggesting minor influence of Pleistocene climatic oscillations on the speciation. The Caucasiron lineages cluster into three principal clades originating in the Upper Miocene. We found a strong support that one of the three clades diversified via allopatric speciation in the Greater Caucasus isolated in the Parathetys Sea. The other two clades originating most likely outside the Greater Caucasus diversified towards high and low altitude, respectively, indicating possible role of climatic factors and/or passive uplift on their differentiation. Current high Caucasiron diversity in the Greater Caucasus is a result of in situ speciation and later immigration from adjacent mountain ranges after the Parathetys Sea retreat. Our phylogeny supported the monophyly of Rhithrogeninae, Epeorus s.l., Caucasiron, and Iron. Epeorus subgenus Ironopsis was found paraphyletic, with its European representatives more closely related to Epeorus s.str. than to Iron. Therefore, we re-arranged taxa treated within Ironopsis to comply with the phylogeny recovered herein.
山脉生物多样性高的一个常见假设是造山运动驱动的多样化,为驻留谱系的快速原地物种形成创造了条件。高加索是一个被认为是生物多样性热点的年轻山系;然而,其多样性的起源和进化仍知之甚少。本研究集中于亚属高加索拟蜉蝣,这是栖息在高加索各地各种溪流的最具多样化的狭域蜉蝣之一。利用基于两个线粒体(COI、16S)和三个核(EF-1α、wg、28S)基因片段的时间校准系统发育,我们测试了高加索造山运动在生物地理学、多样化模式和高加索拟蜉蝣的海拔多样化中的作用。我们发现,造山运动促进了中新世高加索拟蜉蝣的谱系多样化。与山脉抬升相对应的最高多样化率随后显著放缓,表明上新世气候波动对物种形成的影响较小。高加索拟蜉蝣的谱系聚类为三个主要分支,起源于上新世晚期。我们强烈支持三个分支之一通过在 Parathetys 海隔离的大高加索的异域物种形成而多样化。另外两个分支起源于大高加索之外,分别向高海拔和低海拔多样化,表明气候因素和/或被动抬升可能对它们的分化起到了作用。当前,大高加索地区的高加索拟蜉蝣多样性是原地物种形成和 Parathetys 海退缩后来自相邻山脉的移民的结果。我们的系统发育支持 Rhithrogeninae、Epeorus s.l.、Caucasiron 和 Iron 的单系性。Epeorus 亚属 Ironopsis 被发现为并系,其欧洲代表与 Epeorus s.str.的关系比与 Iron 的关系更密切。因此,我们根据本文恢复的系统发育重新排列了在 Ironopsis 中处理的分类群。