Kim Seong-Eun, Ba Demba, Brown Emery N
Department of Electronics and Control Engineering, Hanbat National University, Daejeon 34158, South Korea.
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA.
IEEE Signal Process Lett. 2018 Dec;25(12):1805-1809. doi: 10.1109/lsp.2018.2876606. Epub 2018 Oct 17.
Spectral properties of the electroencephalogram (EEG) are commonly analyzed to characterize the brain's oscillatory properties in basic science and clinical neuroscience studies. The spectrum is a function that describes power as a function of frequency. To date inference procedures for spectra have focused on constructing confidence intervals at single frequencies using large sample-based analytic procedures or jackknife techniques. These procedures perform well when the frequencies of interest are chosen before the analysis. When these frequencies are chosen after some of the data have been analyzed, the validity of these conditional inferences is not addressed. If power at more than one frequency is investigated, corrections for multiple comparisons must also be incorporated. To develop a statistical inference approach that considers the spectrum as a function defined across frequencies, we combine multitaper spectral methods with a frequency-domain bootstrap (FDB) procedure. The multitaper method is optimal for minimizing the bias-variance tradeoff in spectral estimation. The FDB makes it possible to conduct Monte Carlo based inferences for any part of the spectrum by drawing random samples that respect the dependence structure in the EEG time series. We show that our multitaper FDB procedure performs well in simulation studies and in analyses comparing EEG recordings of children from two different age groups receiving general anesthesia.
在基础科学和临床神经科学研究中,脑电图(EEG)的频谱特性通常用于分析大脑的振荡特性。频谱是一个将功率描述为频率函数的函数。迄今为止,频谱的推断程序主要集中在使用基于大样本的分析程序或刀切法在单个频率上构建置信区间。当在分析之前选择感兴趣的频率时,这些程序表现良好。当在分析了一些数据之后选择这些频率时,这些条件推断的有效性并未得到解决。如果研究多个频率的功率,还必须纳入多重比较的校正。为了开发一种将频谱视为跨频率定义的函数的统计推断方法,我们将多窗谱方法与频域自举(FDB)程序相结合。多窗方法在最小化频谱估计中的偏差-方差权衡方面是最优的。频域自举通过抽取尊重EEG时间序列中依赖结构的随机样本,使得对频谱的任何部分进行基于蒙特卡罗的推断成为可能。我们表明,我们的多窗频域自举程序在模拟研究以及比较接受全身麻醉的两个不同年龄组儿童的EEG记录的分析中表现良好。