Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
INRA UMR1388/INPT ENSAT/INPT ENVT GenPhySE, Castanet-Tolosan, France.
J Anim Breed Genet. 2020 Sep;137(5):423-437. doi: 10.1111/jbg.12467. Epub 2020 Jan 30.
In recent years, with development and validation of different genotyping panels, several methods have been proposed to build efficient similarity matrices among individuals to be used for genomic selection. Consequently, the estimated genetic parameters from such information may deviate from their counterpart using traditional family information. In this study, we used a pedigree-based numerator relationship matrix (A) and three types of marker-based relationship matrices ( ) including two identical by descent, that is and and one identical by state, as well as four Gaussian kernel ( ) similarity kernels with different smoothing parameters to predict yet to be observed phenotypes. Also, we used different kinship matrices that are a linear combination of marker-derived IBD or IBS matrices with A, constructed as , where the weight ( ) assigned to each source of information varied over a grid of values. A Bayesian multiple-trait Gaussian model was fitted to estimate the genetic parameters and compare the prediction accuracy in terms of predictive correlation, mean square error and unbiasedness. Results show that the estimated genetic parameters (heritability and correlations) are affected by the source of the information used to create kinship or the weight placed on the sources of genomic and pedigree information. The superiority of GK-based model depends on the smoothing parameters (θ) so that with an optimum θ value, the GK-based model statistically yielded better performance (higher predictive correlation, lowest MSE and unbiased estimates) and more stable correlations and heritability than the model with IBD, IBS or kinship matrices or any of the linear combinations.
近年来,随着不同基因分型面板的发展和验证,已经提出了几种方法来构建个体之间有效的相似性矩阵,以便用于基因组选择。因此,使用这种信息估计的遗传参数可能与其使用传统家庭信息的对应参数有所偏差。在这项研究中,我们使用基于系谱的分子关系矩阵 (A) 和三种基于标记的关系矩阵 ( ),包括两种相同的亲缘关系,即 和 ,一种相同的状态, ,以及四个具有不同平滑参数的高斯核 ( ) 相似性核,用于预测尚未观察到的表型。此外,我们还使用了不同的亲缘关系矩阵,这是基于标记的 IBD 或 IBS 矩阵与 A 的线性组合,构建为 ,其中分配给每个信息源的权重 ( ) 在值网格上变化。拟合了一个贝叶斯多性状高斯模型来估计遗传参数,并根据预测相关性、均方误差和无偏性来比较预测准确性。结果表明,遗传参数(遗传力和相关性)的估计受到用于创建亲缘关系的信息源或放置在基因组和系谱信息源上的权重的影响。基于 GK 的模型的优势取决于平滑参数 (θ),因此在最优 θ 值下,基于 GK 的模型在统计学上表现出更好的性能(更高的预测相关性、最低的 MSE 和无偏估计)以及更稳定的相关性和遗传力,优于基于 IBD、IBS 或 的模型亲缘关系矩阵或任何线性组合。