Suppr超能文献

全球敲除 ROMK 钾通道会加重心脏缺血再灌注损伤,但心肌细胞特异性敲除则不会:对 mitoKATP 身份的影响。

Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP.

机构信息

Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA.

出版信息

J Mol Cell Cardiol. 2020 Feb;139:176-189. doi: 10.1016/j.yjmcc.2020.01.010. Epub 2020 Jan 29.

Abstract

The renal-outer-medullary‑potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K channel (mitoK), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological K channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoK opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoK function, although it can affect mPTP activation threshold.

摘要

肾外髓质钾 (ROMK) 通道在 Bartter 综合征中发生突变,调节肾脏中的离子交换,但它的肾脏外功能仍不清楚。此外,ROMK 被假定为线粒体 ATP 敏感性钾通道 (mitoK) 的孔形成亚基,mitoK 是心脏保护的介质。使用全局和心肌细胞特异性敲除小鼠(ROMK-GKO 和 ROMK-CKO),我们分别描述了 ROMK 敲除对线粒体离子处理、对药理学 K 通道调节剂的反应以及缺血/再灌注 (I/R) 损伤的影响。ROMK-GKO 心脏的线粒体表现出较低的 Ca 触发通透性转换孔 (mPTP) 开放的阈值,但在氧化磷酸化过程中基质体积变化正常。当 I/R 之前进行缺血预处理 (IPC) 方案时,分离的灌注 ROMK-GKO 心脏表现出功能恢复受损和梗死面积增加。由于 ROMK-GKO 小鼠表现出严重的肾脏缺陷和心脏重构,我们进一步对 ROMK-CKO 心脏进行了特征描述,以避免混淆全身效应。ROMK-CKO 心脏的线粒体在氧化磷酸化过程中基质体积反应不变,并且在加入 mitoK 开放剂时仍然肿胀,但 mPTP 开放的阈值较低,类似于 GKO 线粒体。然而,在 ROMK-CKO 心脏中,I/R 诱导的损伤在体内或体外均未加重。最后,我们检查了 ROMK-CKO 心脏对离体 I/R 损伤的反应,有无 IPC,并发现 IPC 仍然保护这些心脏,表明心肌细胞 ROMK 并没有显著参与 IPC 引起的心脏保护途径。总之,从这些新型小鼠品系中获得的研究结果表明,心肌细胞 ROMK 不是 mitoK 功能的中心介质,尽管它可以影响 mPTP 激活阈值。

相似文献

2
Pharmacologic ROMK Inhibition Protects Against Myocardial Ischemia Reperfusion Injury.
Int J Mol Sci. 2025 Apr 17;26(8):3795. doi: 10.3390/ijms26083795.
4
Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?
Cardiovasc Res. 2002 Aug 15;55(3):534-43. doi: 10.1016/s0008-6363(02)00455-8.
5
Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning.
J Pharmacol Exp Ther. 2005 Feb;312(2):644-50. doi: 10.1124/jpet.104.074476. Epub 2004 Sep 2.
6
Mitochondrial ROMK channel is a molecular component of mitoK(ATP).
Circ Res. 2012 Aug 3;111(4):446-54. doi: 10.1161/CIRCRESAHA.112.266445. Epub 2012 Jul 17.

引用本文的文献

1
Pharmacologic ROMK Inhibition Protects Against Myocardial Ischemia Reperfusion Injury.
Int J Mol Sci. 2025 Apr 17;26(8):3795. doi: 10.3390/ijms26083795.
5
Functional Regulation of K Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases.
Front Pharmacol. 2022 Jun 28;13:868401. doi: 10.3389/fphar.2022.868401. eCollection 2022.
6
The Mitochondrial Routing of the Kv1.3 Channel.
Front Oncol. 2022 Mar 24;12:865686. doi: 10.3389/fonc.2022.865686. eCollection 2022.
7
Rethinking Mitchell's Chemiosmotic Theory: Potassium Dominates Over Proton Flux to Drive Mitochondrial FF-ATP Synthase.
Function (Oxf). 2022 Mar 9;3(2):zqac012. doi: 10.1093/function/zqac012. eCollection 2022.
8
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components.
Cancers (Basel). 2022 Mar 12;14(6):1462. doi: 10.3390/cancers14061462.
10
Alternative Targets for Modulators of Mitochondrial Potassium Channels.
Molecules. 2022 Jan 4;27(1):299. doi: 10.3390/molecules27010299.

本文引用的文献

2
Identification of an ATP-sensitive potassium channel in mitochondria.
Nature. 2019 Aug;572(7771):609-613. doi: 10.1038/s41586-019-1498-3. Epub 2019 Aug 21.
3
Optimized Treatment of ST-Elevation Myocardial Infarction.
Circ Res. 2019 Jul 5;125(2):245-258. doi: 10.1161/CIRCRESAHA.119.315344. Epub 2019 Jul 3.
4
Evidence for a mitochondrial ATP-regulated potassium channel in human dermal fibroblasts.
Biochim Biophys Acta Bioenerg. 2018 May;1859(5):309-318. doi: 10.1016/j.bbabio.2018.02.005. Epub 2018 Feb 16.
5
Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice.
Am J Physiol Regul Integr Comp Physiol. 2018 Mar 1;314(3):R334-R341. doi: 10.1152/ajpregu.00315.2017. Epub 2017 Nov 1.
6
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection.
Biochem J. 2017 Jun 9;474(12):2067-2094. doi: 10.1042/BCJ20160623.
9
Discovery of MK-7145, an Oral Small Molecule ROMK Inhibitor for the Treatment of Hypertension and Heart Failure.
ACS Med Chem Lett. 2016 May 12;7(7):697-701. doi: 10.1021/acsmedchemlett.6b00122. eCollection 2016 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验