Raja Rajikha, Caprihan Arvind, Rosenberg Gary A, Rachakonda Srinivas, Calhoun Vince D
The Mind Research Network, Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA.
The Mind Research Network, Albuquerque, NM 87106, USA.
J Neurosci Methods. 2020 Apr 1;335:108598. doi: 10.1016/j.jneumeth.2020.108598. Epub 2020 Jan 28.
Vascular cognitive impairment and dementia (VCID) and Alzheimer's disease are predominant diseases among the aging population resulting in decline of various cognitive domains. Diffusion weighted MRI (DW-MRI) has been shown to be a promising aid in the diagnosis of such diseases. However, there are various models of DW-MRI and the interpretation of diffusion metrics depends on the model used in fitting data. Most previous studies are entirely based on parameters calculated from a single diffusion model.
We employ a data fusion framework wherein diffusion metrics from different models such as diffusion tensor imaging, diffusion kurtosis imaging and constrained spherical deconvolution model are fused using well known blind source separation approach to investigate white matter microstructural changes in population comprising of controls and VCID subgroups. Multiple comparisons between subject groups and prediction analysis using features from individual models and proposed fusion model are carried out to evaluate performance of proposed method.
Diffusion features from individual models successfully distinguished between controls and disease groups, but failed to differentiate between disease groups, whereas fusion approach showed group differences between disease groups too. WM tracts showing significant differences are superior longitudinal fasciculus, anterior thalamic radiation, arcuate fasciculus, optic radiation and corticospinal tract.
ROC analysis showed increased AUC for fusion (AUC = 0.913, averaged across groups and tracts) compared to that of uni-model features (AUC = 0.77) demonstrating increased sensitivity of proposed method.
Overall our results highlight the benefits of multi-model fusion approach, providing improved sensitivity in discriminating VCID subgroups.
血管性认知障碍和痴呆(VCID)以及阿尔茨海默病是老年人群中的主要疾病,会导致各种认知领域的衰退。扩散加权磁共振成像(DW-MRI)已被证明在诊断此类疾病方面是一种有前景的辅助手段。然而,DW-MRI有多种模型,扩散指标的解释取决于用于拟合数据的模型。大多数先前的研究完全基于从单一扩散模型计算出的参数。
我们采用了一个数据融合框架,其中使用著名的盲源分离方法融合来自不同模型(如扩散张量成像、扩散峰度成像和约束球形去卷积模型)的扩散指标,以研究包括对照组和VCID亚组的人群中的白质微观结构变化。对受试者组之间进行多次比较,并使用来自单个模型和所提出的融合模型的特征进行预测分析,以评估所提出方法的性能。
单个模型的扩散特征成功区分了对照组和疾病组,但未能区分疾病组,而融合方法也显示出疾病组之间的差异。显示出显著差异的白质束有上纵束、丘脑前辐射、弓状束、视辐射和皮质脊髓束。
ROC分析表明,与单模型特征(AUC = 0.77)相比,融合方法的AUC有所增加(AUC = 0.913,跨组和束平均),这表明所提出方法的敏感性有所提高。
总体而言,我们的结果突出了多模型融合方法的优势,在区分VCID亚组方面提供了更高的敏感性。