Suppr超能文献

基于小剂量吉西他滨的载体递药实现胰腺癌免疫化学治疗的三联药物疗法。

Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy.

机构信息

Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.

Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Acta Biomater. 2020 Apr 1;106:289-300. doi: 10.1016/j.actbio.2020.01.039. Epub 2020 Jan 28.

Abstract

Poor tumor penetration and highly immunosuppressive tumor microenvironment are two major factors that limit the therapeutic efficacy for the treatment of pancreatic ductal adenocarcinoma (PDA). In this work, a redox-responsive gemcitabine (GEM)-conjugated polymer, PGEM, was employed as a tumor penetrating nanocarrier to co-load an immunomodulating agent (NLG919, an inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1) and a chemotherapeutic drug (paclitaxel (PTX)) for immunochemo combination therapy. The NLG919/PTX co-loaded micelles showed very small size of 15 nm. In vivo tumor imaging study indicated that PGEM was much more effective than the relatively large-sized POEG-co-PVD nanoparticles (160 nm) in deep tumor penetration and could reach the core of the pancreatic tumor. PTX formulated in the PGEM carrier showed improved tumor inhibition effect compared with PGEM alone. Incorporation of NLG919 in the formulation led to a more immunoactive tumor microenvironment with significantly decreased percentage of Treg cells, and increased percentages of CD4 IFNγ T and CD8 IFNγ T cells. PGEM micelles co-loaded with PTX and NLG919 showed the best anti-tumor activity in pancreatic (PANC02) as well as two other tumor models compared to PGEM micelles loaded with PTX or NLG919 alone, suggesting that codelivery of NLG919 and PTX via PGEM may represent an effective strategy for immunochemotherapy of PDA as well as other types of cancers. STATEMENT OF SIGNIFICANCE: In order to effectively accumulate and penetrate the PDA that is poorly vascularized and enriched with dense fibrotic stroma, the size of nanomedicine has to be well controlled. Here, we reported an immunochemotherapy regimen based on co-delivery of GEM, PTX and IDO1 inhibitor NLG919 through an ultra-small sized GEM-based nanocarrier (PGEM). We demonstrated that the PGEM carrier was effective in accumulating and penetrating into PDA tumors. Besides, PGEM co-loaded with PTX and NLG9 induced an improved anti-tumor immune response and was highly efficacious in inhibiting tumor growth as well as in prolonging the survival rate in PANC02 xenograft model. Our work represents a potential strategy for enhancing PDA tumor penetration and immunochemotherapy.

摘要

乏氧和高度免疫抑制的肿瘤微环境是限制胰腺导管腺癌 (PDA) 治疗效果的两个主要因素。在这项工作中,我们使用了一种氧化还原响应的吉西他滨 (GEM) 偶联聚合物 PGEM,作为一种肿瘤穿透纳米载体来共载一种免疫调节剂 (NLG919,吲哚胺 2,3-双加氧酶 1 (IDO1) 的抑制剂) 和一种化疗药物 (紫杉醇 (PTX)),用于免疫化疗联合治疗。共载有 NLG919/PTX 的胶束粒径非常小,约为 15nm。体内肿瘤成像研究表明,PGEM 比相对较大尺寸的 POEG-co-PVD 纳米颗粒 (~160nm) 更有效地穿透肿瘤深部,并能到达胰腺肿瘤的核心部位。与 PGEM 单独给药相比,PGEM 中包载的 PTX 显示出更好的肿瘤抑制效果。制剂中加入 NLG919 可使肿瘤微环境更具免疫活性,Treg 细胞的百分比显著降低,CD4 IFNγ T 和 CD8 IFNγ T 细胞的百分比增加。与单独载有 PTX 或 NLG919 的 PGEM 胶束相比,共载有 PTX 和 NLG919 的 PGEM 胶束在胰腺 (PANC02) 以及另外两种肿瘤模型中表现出更好的抗肿瘤活性,这表明通过 PGEM 共递药可能是治疗 PDA 以及其他类型癌症的有效免疫化疗策略。

意义声明

为了有效地积累和穿透血管化不良且富含致密纤维基质的 PDA,纳米药物的大小必须得到很好的控制。在这里,我们通过一种基于 GEM 的超小型纳米载体 (PGEM) 报告了一种基于 GEM、PTX 和 IDO1 抑制剂 NLG919 的共递药免疫化疗方案。我们证明了 PGEM 载体在积聚和穿透 PDA 肿瘤方面是有效的。此外,共载有 PTX 和 NLG9 的 PGEM 诱导了改善的抗肿瘤免疫反应,并在 PANC02 异种移植模型中高度有效地抑制肿瘤生长和延长存活率。我们的工作代表了增强 PDA 肿瘤穿透性和免疫化疗的一种潜在策略。

相似文献

1
Triple drugs co-delivered by a small gemcitabine-based carrier for pancreatic cancer immunochemotherapy.
Acta Biomater. 2020 Apr 1;106:289-300. doi: 10.1016/j.actbio.2020.01.039. Epub 2020 Jan 28.
5
Improved Cancer Immunochemotherapy via Optimal Co-delivery of Chemotherapeutic and Immunomodulatory Agents.
Mol Pharm. 2018 Nov 5;15(11):5162-5173. doi: 10.1021/acs.molpharmaceut.8b00717. Epub 2018 Sep 28.
7
NLG919/cyclodextrin complexation and anti-cancer therapeutic benefit as a potential immunotherapy in combination with paclitaxel.
Eur J Pharm Sci. 2019 Oct 1;138:105034. doi: 10.1016/j.ejps.2019.105034. Epub 2019 Aug 2.
8
Combinatorial antitumor effects of indoleamine 2,3-dioxygenase inhibitor NLG919 and paclitaxel in a murine B16-F10 melanoma model.
Int J Immunopathol Pharmacol. 2017 Sep;30(3):215-226. doi: 10.1177/0394632017714696. Epub 2017 Jun 12.
9
Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy.
Acta Biomater. 2019 May;90:300-313. doi: 10.1016/j.actbio.2019.03.048. Epub 2019 Mar 28.

引用本文的文献

1
Modulating immune cells within pancreatic ductal adenocarcinoma via nanomedicine.
Essays Biochem. 2025 May 26. doi: 10.1042/EBC20243001.
2
Enzyme-responsive vitamin D-based micelles for paclitaxel-controlled delivery and synergistic pancreatic cancer therapy.
Mater Today Bio. 2025 Feb 4;31:101555. doi: 10.1016/j.mtbio.2025.101555. eCollection 2025 Apr.
3
Redox-responsive metal-organic framework nanocapsules enhance tumor chemo-immunotherapy by modulating tumor metabolic reprogramming.
Mater Today Bio. 2025 Jan 13;31:101487. doi: 10.1016/j.mtbio.2025.101487. eCollection 2025 Apr.
4
YAP/TAZ Inhibitor-Based Drug Delivery System for Selective Tumor Accumulation and Cancer Combination Therapy.
Biomacromolecules. 2025 Jan 13;26(1):266-278. doi: 10.1021/acs.biomac.4c01076. Epub 2024 Dec 7.
5
Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies.
Int J Nanomedicine. 2024 Aug 28;19:8847-8882. doi: 10.2147/IJN.S458086. eCollection 2024.
6
Theranostic nanoparticles for detection and treatment of pancreatic cancer.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Jul-Aug;16(4):e1983. doi: 10.1002/wnan.1983.
7
The biological function of Serpinb9 and Serpinb9-based therapy.
Front Immunol. 2024 Jun 20;15:1422113. doi: 10.3389/fimmu.2024.1422113. eCollection 2024.
8
Overcoming pancreatic cancer immune resistance by codelivery of CCR2 antagonist using a STING-activating gemcitabine-based nanocarrier.
Mater Today (Kidlington). 2023 Jan-Feb;62:33-50. doi: 10.1016/j.mattod.2022.11.008. Epub 2022 Dec 8.
9
Recent advances in drug delivery and targeting for the treatment of pancreatic cancer.
J Control Release. 2024 Feb;366:231-260. doi: 10.1016/j.jconrel.2023.12.053. Epub 2024 Jan 4.
10
Drug Delivery Strategies for the Treatment of Pancreatic Cancer.
Pharmaceutics. 2023 Apr 22;15(5):1318. doi: 10.3390/pharmaceutics15051318.

本文引用的文献

2
Quantitation of paclitaxel, and its 6-alpha-OH and 3-para-OH metabolites in human plasma by LC-MS/MS.
J Pharm Biomed Anal. 2019 Aug 5;172:26-32. doi: 10.1016/j.jpba.2019.04.027. Epub 2019 Apr 15.
4
Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy.
Cancers (Basel). 2018 Jan 3;10(1):6. doi: 10.3390/cancers10010006.
6
Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy.
J Control Release. 2017 Jul 28;258:43-55. doi: 10.1016/j.jconrel.2017.05.006. Epub 2017 May 12.
7
Ultrasmall polymeric nanocarriers for drug delivery to podocytes in kidney glomerulus.
J Control Release. 2017 Jun 10;255:94-107. doi: 10.1016/j.jconrel.2017.04.005. Epub 2017 Apr 7.
8
Immunotherapy in pancreatic cancer treatment: a new frontier.
Therap Adv Gastroenterol. 2017 Jan;10(1):168-194. doi: 10.1177/1756283X16667909. Epub 2016 Oct 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验