Suppr超能文献

扩展臭氧-生物滤池深度处理饮用水的现场试验研究。

Extended field investigations of ozone-biofiltration advanced water treatment for potable reuse.

机构信息

Department of Civil and Environmental Engineering, University of Nevada, 1664 N Virginia St, Reno, NV, 89557-0258, USA; Stantec Consulting Services Inc., 3875 Atherton Road, Rocklin, CA, 95765, USA.

Department of Civil and Environmental Engineering, University of Nevada, 1664 N Virginia St, Reno, NV, 89557-0258, USA.

出版信息

Water Res. 2020 Apr 1;172:115513. doi: 10.1016/j.watres.2020.115513. Epub 2020 Jan 22.

Abstract

Recovering and reusing treated wastewater effluent is a sustainable and cost-effective practice for addressing global water sustainability. To date, most potable reuse advanced water treatment (AWT) solutions are based on reverse osmosis (RO), which generates a continuous reject stream of concentrated brine waste. Ozone-biofiltration based solutions have been investigated as a potential alternative for RO. However, implementation of ozone-biofiltration for potable reuse projects around the world has been limited. The goal of this study was to conduct an extended field investigation of ozone-biofiltration treatment to address regulatory, design, and operational hurdles that may hinder implementation in water-short areas. For 16 months, two parallel biological activated carbon (BAC) filters were operated at empty bed contact times (EBCTs) of 10 min and 20 min treating up to 60,000 and 30,000 bed volumes (BVs), respectively, of sand filtered effluent from a municipal wastewater treatment process. BAC 1 (EBCT = 10 min) and BAC 2 (EBCT = 20 min) used Calgon Filtrasorb 400 granular activated carbon (GAC) as filter media, with equal bed depths of 0.8 m. Increasing the specific ozone dose from 0.9 to 2.0 provided a muted response with respect to oxidation of contaminants of emerging concern (CECs) that are resistive to ozonation. N-Nitrosodimethylamine (NDMA) was generated during ozonation, with the average concentration of NDMA in ozonated effluent being 40.4 ng/L. In BAC 1 (EBCT = 10 min), NDMA was fully removed during the first month of study (<2000 BVs), partially removed between 2000 and 20,000 BVs, and completely removed when monitored between 57,000 and 62,000 BVs. These trends clearly reveal time-dependent interactions between carbon-based (e.g., adsorption) and non-carbon-based (e.g., biodegradation) removal mechanisms. In BAC 2 (EBCT = 20 min), almost all CECs, excluding NDMA, were removed consistently throughout the study (through ∼30,000 BVs). This indicates a somewhat different interaction between carbon-based and non-carbon-based removal in the more lightly loaded BAC 2, compared to BAC 1. After 482 days of operation, BAC 1 (EBCT = 10 min) produced effluent with lower NDMA concentration (<2 ng/L) than BAC 2 (10 ng/L), confirming prior evidence of cometabolic NDMA biodegradation pathways operable in more heavily loaded BACs. These findings emphasize the need for extended field testing (50,000 BVs or greater). BAC 1 removed TOC in effluent until it plateaued at around 6 mg/L after 60,000 BVs, whereas BAC 2 effluent plateaued at around 4 mg/L. Under plateau conditions, BAC 1 and BAC 2 with sand filter pretreatment and ozonation appear to have a gross TOC removal potential of around 0.2-0.3 kg of TOC removed per day per cubic meter of carbon media (kg/d/m). A comparative analysis of findings from this study and results from a past ozone-BAC study in the Reno area (termed BAC 3 operated downstream of membrane filter with an EBCT of 30 min) shows that higher TOC removal was observed in BAC with shorter EBCT and upstream sand filter compared to BAC with longer EBCT and upstream membrane filter. The present study addresses the regulatory and financial concerns associated with ozone-BAC performance in potable reuse applications. Improved comprehension of ozone-BAC performance, coupled with its reduced capital and operations and maintenance (O&M) costs compared to RO, may accelerate the full-scale implementation of ozone-BAC treatment as a sustainable solution for the rapidly emerging potable reuse market.

摘要

处理废水的再利用和回收是解决全球水资源可持续性问题的一种可持续且具有成本效益的实践。迄今为止,大多数饮用水再利用高级水处理 (AWT) 解决方案都基于反渗透 (RO),反渗透会产生连续的浓缩盐水废物。基于臭氧生物过滤的解决方案已被研究作为 RO 的潜在替代品。然而,臭氧生物过滤在全球饮用水再利用项目中的实施受到限制。本研究的目的是进行臭氧生物过滤处理的扩展现场调查,以解决可能阻碍在水资源短缺地区实施的监管、设计和运营障碍。在 16 个月的时间里,两个平行的生物活性炭 (BAC) 过滤器以 10 分钟和 20 分钟的空床接触时间 (EBCT) 运行,分别处理高达 60000 和 30000 个经过砂滤处理的市政废水处理过程的床体积 (BV)。BAC1(EBCT=10 分钟)和 BAC2(EBCT=20 分钟)使用 Calgon Filtrasorb 400 颗粒活性炭 (GAC) 作为过滤介质,床深相等,均为 0.8 米。将特定臭氧剂量从 0.9 增加到 2.0 对新兴关注污染物 (CECs) 的氧化反应的响应较弱,这些污染物对臭氧处理具有抗性。臭氧处理过程中会生成 N-亚硝基二甲胺 (NDMA),臭氧处理后的 NDMA 平均浓度为 40.4ng/L。在 BAC1(EBCT=10 分钟)中,NDMA 在研究的第一个月(<2000BV)期间被完全去除,在 2000 到 20000BV 之间部分去除,在 57000 到 62000BV 之间监测时完全去除。这些趋势清楚地揭示了碳基(例如吸附)和非碳基(例如生物降解)去除机制之间的时间依赖性相互作用。在 BAC2(EBCT=20 分钟)中,除 NDMA 外,几乎所有的 CECs 在整个研究过程中(通过约 30000BV)都被一致去除。这表明在负载较轻的 BAC2 中,碳基和非碳基去除之间的相互作用与 BAC1 有所不同。经过 482 天的运行,BAC1(EBCT=10 分钟)产生的出水 NDMA 浓度(<2ng/L)低于 BAC2(10ng/L),证实了先前在负载较重的 BAC 中存在可操作的共代谢 NDMA 生物降解途径的证据。这些发现强调了需要进行扩展的现场测试(50000BV 或更多)。BAC1 去除出水中的 TOC,直到在 60000BV 后达到约 6mg/L 的平台期,而 BAC2 出水中的 TOC 则在约 4mg/L 处达到平台期。在平台条件下,经过预处理的砂滤和臭氧处理的 BAC1 和 BAC2 似乎具有每天每立方米碳介质去除约 0.2-0.3kg TOC 的总 TOC 去除潜力(kg/d/m)。对本研究的发现和雷诺地区过去的臭氧-BAC 研究(称为 BAC3,在 30 分钟 EBCT 的膜过滤器下游运行)的结果进行的比较分析表明,与具有较长 EBCT 和上游膜过滤器的 BAC 相比,具有较短 EBCT 和上游砂过滤器的 BAC 具有更高的 TOC 去除率。本研究解决了臭氧-BAC 在饮用水再利用应用中的性能相关的监管和财务问题。对臭氧-BAC 性能的理解的提高,以及与 RO 相比,臭氧-BAC 的资本和运营与维护 (O&M) 成本降低,可能会加速臭氧-BAC 处理作为新兴饮用水再利用市场的可持续解决方案的全面实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验