Institut de Recherche de l'Ecole Navale, EA3634, Ecole Navale / Arts et Métiers ParisTech - BCRM Brest CC600, 29240 Brest Cedex 9, France.
Bioacoustics Research Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, New York, 14850, USA.
J Acoust Soc Am. 2020 Jan;147(1):260. doi: 10.1121/10.0000609.
Extraction of tonal signals embedded in background noise is a crucial step before classification and separation of low-frequency sounds of baleen whales. This work reports results of comparing five tonal detectors, namely the instantaneous frequency estimator, YIN estimator, harmonic product spectrum, cost-function-based detector, and ridge detector. Comparisons, based on a low-frequency adaptation of the Silbido scoring feature, employ five metrics, which quantify the effectiveness of these detectors to retrieve tonal signals that have a wide range of signal to noise ratios (SNRs) and the quality of the detection results. Ground-truth data were generated by embedding 20 synthetic Antarctic blue whale (Balaenoptera musculus intermedia) calls in randomly extracted 30-min noise segments from a 79 h-library recorded by an Ocean Bottom Seismometer in the Indian Ocean during 2012-2013. Monte-Carlo simulations were performed using 20 trials per SNR, ranging from 0 dB to 15 dB. Overall, the tonal detection results show the superiority of the cost-function-based and the ridge detectors, over the other detectors, for all SNR values. More particularly, for lower SNRs (⩽3 dB), these two methods outperformed the other three with high recall, low fragmentation, and high coverage scores. For SNRs ⩾7 dB, the five methods performed similarly.
从背景噪声中提取嵌入的声调信号是对须鲸低频声音进行分类和分离的关键步骤。本工作报告了比较五种声调检测器的结果,即瞬时频率估计器、YIN 估计器、谐波乘积谱、基于代价函数的检测器和脊检测器。基于 Silbido 评分特征的低频适应性的比较使用了五个指标,这些指标量化了这些检测器在检索具有广泛信噪比 (SNR) 的声调信号以及检测结果质量方面的有效性。真实数据是通过在 2012 年至 2013 年期间在印度洋由海底地震仪记录的 79 小时库中随机提取的 30 分钟噪声段中嵌入 20 个合成的南极蓝鲸 (Balaenoptera musculus intermedia) 叫声生成的。使用每个 SNR 20 次试验进行了蒙特卡罗模拟,范围从 0dB 到 15dB。总体而言,对于所有 SNR 值,声调检测结果均表明基于代价函数和脊检测器的优越性,优于其他检测器。更具体地说,对于较低的 SNR(⩽3dB),这两种方法的召回率高、碎片少、覆盖率高,优于其他三种方法。对于 SNR ⩾7dB,这五种方法的性能相似。