Statistical Department, Effi-Stat, 22, rue du Pont-Neuf, Paris, 75001, France.
Ther Innov Regul Sci. 2020 Jan;54(1):117-127. doi: 10.1007/s43441-019-00035-z. Epub 2020 Jan 6.
In adaptive two-group clinical trials, a current method is to perform a one-shot unblinded sample size reassessment. Whereas the interim unblinded look of the data is adjusted for inference by using the weighted Cui-Hung-Wang statistics, some questions remain: how and when to reassess the sample size?
We define the Power Derivative Principle as follows: a sample size is optimal when the derivative of the power with respect to the sample size has reached some implicit value. Applied to two-group clinical trials, this Power Derivative Principle determines a new one-shot unblinded sample size reassessment rule (including the determination of futility bounds). A full Power Derivative Strategy induces furthermore an optimal information fraction for the interim analysis. The Power Derivative Strategy is then compared to adaptive design methods proposed in the literature and to group sequential strategies. For this comparison, we used, on the one hand, the very common information fraction f = 0.5 and, on the other hand, the information fraction found as being optimal with the Power Derivative Principle.
The optimal information fraction depends only on α-and β-risks. For usual values of these risks, the optimal information fraction value is very close to 0.9. Moreover, with this unexpected optimal value, reassessment methods become roughly comparable (it is definitely not the case when f=0.5).
Our results suggest that a sample size reassessment is more beneficial when considered close to the planned end of a trial, allowing a study with borderline interim results to be saved.
在适应性两群组临床试验中,目前的方法是进行一次性非盲样本量重新评估。虽然数据的中期非盲观察结果通过加权崔洪旺统计量进行了推断调整,但仍存在一些问题:如何以及何时重新评估样本量?
我们将“功效导数原理”定义如下:当功效对样本量的导数达到某个隐含值时,样本量是最佳的。将该原理应用于两群组临床试验,可确定新的一次性非盲样本量重新评估规则(包括确定无效界限)。完整的“功效导数策略”还会为中期分析确定最佳信息分数。然后,我们将“功效导数策略”与文献中提出的适应性设计方法和分组序贯策略进行比较。为此,我们一方面使用非常常见的信息分数 f = 0.5,另一方面使用“功效导数原理”找到的最佳信息分数。
最佳信息分数仅取决于 α 和 β 风险。对于这些风险的常见值,最佳信息分数值非常接近 0.9。此外,使用这个意想不到的最佳值,重新评估方法变得大致可比(当 f = 0.5 时,情况肯定不是这样)。
我们的结果表明,当接近试验计划结束时进行样本量重新评估更有益,可以挽救中期结果呈边缘状态的研究。