Suppr超能文献

功效导数原理及其在何时、如何进行一次性非盲重新评估样本量的应用

The Power Derivative Principle, and Its Application to How and When to Perform a One-Shot Unblinded Reassessment Sample Size.

机构信息

Statistical Department, Effi-Stat, 22, rue du Pont-Neuf, Paris, 75001, France.

出版信息

Ther Innov Regul Sci. 2020 Jan;54(1):117-127. doi: 10.1007/s43441-019-00035-z. Epub 2020 Jan 6.

Abstract

BACKGROUND

In adaptive two-group clinical trials, a current method is to perform a one-shot unblinded sample size reassessment. Whereas the interim unblinded look of the data is adjusted for inference by using the weighted Cui-Hung-Wang statistics, some questions remain: how and when to reassess the sample size?

METHODS

We define the Power Derivative Principle as follows: a sample size is optimal when the derivative of the power with respect to the sample size has reached some implicit value. Applied to two-group clinical trials, this Power Derivative Principle determines a new one-shot unblinded sample size reassessment rule (including the determination of futility bounds). A full Power Derivative Strategy induces furthermore an optimal information fraction for the interim analysis. The Power Derivative Strategy is then compared to adaptive design methods proposed in the literature and to group sequential strategies. For this comparison, we used, on the one hand, the very common information fraction f = 0.5 and, on the other hand, the information fraction found as being optimal with the Power Derivative Principle.

RESULTS

The optimal information fraction depends only on α-and β-risks. For usual values of these risks, the optimal information fraction value is very close to 0.9. Moreover, with this unexpected optimal value, reassessment methods become roughly comparable (it is definitely not the case when f=0.5).

CONCLUSIONS

Our results suggest that a sample size reassessment is more beneficial when considered close to the planned end of a trial, allowing a study with borderline interim results to be saved.

摘要

背景

在适应性两群组临床试验中,目前的方法是进行一次性非盲样本量重新评估。虽然数据的中期非盲观察结果通过加权崔洪旺统计量进行了推断调整,但仍存在一些问题:如何以及何时重新评估样本量?

方法

我们将“功效导数原理”定义如下:当功效对样本量的导数达到某个隐含值时,样本量是最佳的。将该原理应用于两群组临床试验,可确定新的一次性非盲样本量重新评估规则(包括确定无效界限)。完整的“功效导数策略”还会为中期分析确定最佳信息分数。然后,我们将“功效导数策略”与文献中提出的适应性设计方法和分组序贯策略进行比较。为此,我们一方面使用非常常见的信息分数 f = 0.5,另一方面使用“功效导数原理”找到的最佳信息分数。

结果

最佳信息分数仅取决于 α 和 β 风险。对于这些风险的常见值,最佳信息分数值非常接近 0.9。此外,使用这个意想不到的最佳值,重新评估方法变得大致可比(当 f = 0.5 时,情况肯定不是这样)。

结论

我们的结果表明,当接近试验计划结束时进行样本量重新评估更有益,可以挽救中期结果呈边缘状态的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验