Al-Asad Jawad Fawaz, Khan Adil Humayun, Latif Ghazanfar, Hajji Wadii
Department of Electrical Engineering, Prince Mohammad bin Fahd University, Al Khobar, Saudi Arabia.
Department of Computer Science, Prince Mohammad bin Fahd University, Al Khobar, Saudi Arabia.
Curr Med Imaging Rev. 2019;15(7):679-688. doi: 10.2174/1573405614666180813113914.
An approach based on QR decomposition, to remove speckle noise from medical ultrasound images, is presented in this paper.
The speckle noisy image is segmented into small overlapping blocks. A global covariance matrix is calculated by averaging the corresponding covariances of the blocks. QR decomposition is applied to the global covariance matrix. To filter out speckle noise, the first subset of orthogonal vectors of the Q matrix is projected onto the signal subspace. The proposed approach is compared with five benchmark techniques; Homomorphic Wavelet Despeckling (HWDS), Speckle Reducing Anisotropic Diffusion (SRAD), Frost, Kuan and Probabilistic Non-Local Mean (PNLM).
When applied to different simulated and real ultrasound images, the QR based approach has secured maximum despeckling performance while maintaining optimal resolution and edge detection, and that is regardless of image size or nature of speckle; fine or rough.
本文提出一种基于QR分解的方法,用于去除医学超声图像中的斑点噪声。
将有斑点噪声的图像分割成小的重叠块。通过对这些块的相应协方差求平均来计算全局协方差矩阵。对全局协方差矩阵应用QR分解。为了滤除斑点噪声,将Q矩阵的第一组正交向量投影到信号子空间上。将所提出的方法与五种基准技术进行比较;同态小波去斑(HWDS)、斑点减少各向异性扩散(SRAD)、弗罗斯特、关和概率非局部均值(PNLM)。
当应用于不同的模拟和真实超声图像时,基于QR的方法在保持最佳分辨率和边缘检测的同时,获得了最大的去斑性能,且与图像大小或斑点性质无关;细或粗。