Suppr超能文献

基于QR的医学超声图像去斑方法。

QR Based Despeckling Approach for Medical Ultrasound Images.

作者信息

Al-Asad Jawad Fawaz, Khan Adil Humayun, Latif Ghazanfar, Hajji Wadii

机构信息

Department of Electrical Engineering, Prince Mohammad bin Fahd University, Al Khobar, Saudi Arabia.

Department of Computer Science, Prince Mohammad bin Fahd University, Al Khobar, Saudi Arabia.

出版信息

Curr Med Imaging Rev. 2019;15(7):679-688. doi: 10.2174/1573405614666180813113914.

Abstract

BACKGROUND

An approach based on QR decomposition, to remove speckle noise from medical ultrasound images, is presented in this paper.

METHODS

The speckle noisy image is segmented into small overlapping blocks. A global covariance matrix is calculated by averaging the corresponding covariances of the blocks. QR decomposition is applied to the global covariance matrix. To filter out speckle noise, the first subset of orthogonal vectors of the Q matrix is projected onto the signal subspace. The proposed approach is compared with five benchmark techniques; Homomorphic Wavelet Despeckling (HWDS), Speckle Reducing Anisotropic Diffusion (SRAD), Frost, Kuan and Probabilistic Non-Local Mean (PNLM).

RESULTS AND CONCLUSION

When applied to different simulated and real ultrasound images, the QR based approach has secured maximum despeckling performance while maintaining optimal resolution and edge detection, and that is regardless of image size or nature of speckle; fine or rough.

摘要

背景

本文提出一种基于QR分解的方法,用于去除医学超声图像中的斑点噪声。

方法

将有斑点噪声的图像分割成小的重叠块。通过对这些块的相应协方差求平均来计算全局协方差矩阵。对全局协方差矩阵应用QR分解。为了滤除斑点噪声,将Q矩阵的第一组正交向量投影到信号子空间上。将所提出的方法与五种基准技术进行比较;同态小波去斑(HWDS)、斑点减少各向异性扩散(SRAD)、弗罗斯特、关和概率非局部均值(PNLM)。

结果与结论

当应用于不同的模拟和真实超声图像时,基于QR的方法在保持最佳分辨率和边缘检测的同时,获得了最大的去斑性能,且与图像大小或斑点性质无关;细或粗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验