Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University.
Department of Pathology, New York University School of Medicine.
Jpn J Infect Dis. 2020 May 22;73(3):235-241. doi: 10.7883/yoken.JJID.2019.496. Epub 2020 Jan 31.
The monoclonal antibody 1C10 targets the V3 loop of HIV-1 and neutralizes a broad range of clade B viruses. However, the mode of interaction between 1C10 and the V3 loop remains unclear because crystallization of 1C10 and the V3 peptide was unsuccessful due to the flexible regions present in both 1C10 and the V3 peptide. In this study, we predicted the 1C10 amino acid residues that make contact with the V3 loop using a deep learning (DL)-based method. Inputs from ROSIE for docking simulation and FastContact, Naccess, and PDBtools, to approximate interactions were processed by Chainer for DL, and outputs were obtained as probabilities of contact residues. Using this DL algorithm, D95, D97, P100a, and D100b of CDRH3; D53, and D56 of CDRH2; and D61 of FR3 were highly ranked as contact residues of 1C10. Substitution of these residues with alanine significantly decreased the affinity of 1C10 to the V3 peptide. Moreover, the higher the rank of the residue, the more the binding activity diminished. This study demonstrates that the prediction of contact residues using a DL-based approach is a precise and useful tool for the analysis of antibody-antigen interactions.
单克隆抗体 1C10 靶向 HIV-1 的 V3 环,能够中和广泛的 B 型病毒。然而,由于 1C10 和 V3 肽都存在柔性区域,导致 1C10 和 V3 肽的结晶均不成功,因此,1C10 与 V3 环之间的相互作用模式仍不清楚。在这项研究中,我们使用基于深度学习(DL)的方法预测了与 V3 环相互作用的 1C10 氨基酸残基。输入来自 ROSIE 用于对接模拟的信息,以及 FastContact、Naccess 和 PDBtools 来近似相互作用,通过 Chainer 对其进行 DL 处理,然后得到接触残基的概率作为输出。使用这个 DL 算法,CDRH3 中的 D95、D97、P100a 和 D100b;CDRH2 中的 D53 和 D56;以及 FR3 中的 D61 被高度评价为 1C10 的接触残基。用丙氨酸取代这些残基会显著降低 1C10 与 V3 肽的亲和力。此外,残基的排名越高,结合活性下降得越多。这项研究表明,使用基于 DL 的方法预测接触残基是分析抗体-抗原相互作用的一种精确而有用的工具。