State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China.
Biological Physics Group, School of Physics and Astronomy , University of Manchester , Oxford Road , Manchester M13 9PL , U.K.
Langmuir. 2020 Feb 25;36(7):1737-1744. doi: 10.1021/acs.langmuir.9b03774. Epub 2020 Feb 11.
The function and properties of peptide-based materials depend not only on the amino acid sequence but also on the molecular conformations. In this paper, we chose a series of peptides G(XXKK)X-NH ( = 0, 3; = 2, 3; X = I, L, and V) as the model molecules and studied the conformation regulation through N-terminus lipidation and their formulation with surfactants. The structural and morphological transition of peptide self-assemblies have also been investigated via transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, and small-angle neutron scattering. With the terminal alkylation, the molecular conformation changed from random coil to β-sheet or α-helix. The antimicrobial activities of alkylated peptide were different. C-G(IIKK)I-NH showed antimicrobial activity against while C-(IIKK)I-NH and C-G(IIKK)I-NH did not kill the bacteria. The surfactant sodium dodecyl sulfonate could rapidly induce the self-assemblies of alkylated peptides (C-(IIKK)I-NH, C-G(IIKK)I-NH, C-G(VVKK)V-NH) from nanofibers to micelles, along with the conformation changing from β-sheet to α-helix. The cationic surfactant hexadecyl trimethyl ammonium bromide made the lipopeptide nanofibers thinner, and nonionic surfactant polyoxyethylene (23) lauryl ether (CEO) induced the nanofibers much more intensively. Both the activity and the conformation of the α-helical peptide could be modulated by lipidation. Then, the self-assembled morphologies of alkylated peptides could also be further regulated with surfactants through hydrophobic, electrostatic, and hydrogen-bonding interactions. These results provided useful strategies to regulate the molecular conformations in peptide-based material functionalization.
基于肽的材料的功能和性质不仅取决于氨基酸序列,还取决于分子构象。在本文中,我们选择了一系列肽 G(XXKK)X-NH(=0,3;=2,3;X=I,L 和 V)作为模型分子,并通过 N 端脂质化和与表面活性剂形成来研究构象调节。还通过透射电子显微镜、原子力显微镜、圆二色性光谱和小角中子散射研究了肽自组装的结构和形态转变。通过末端烷基化,分子构象从无规线团转变为β-折叠或α-螺旋。烷基化肽的抗菌活性不同。C-G(IIKK)I-NH 对 具有抗菌活性,而 C-(IIKK)I-NH 和 C-G(IIKK)I-NH 则不能杀死细菌。表面活性剂十二烷基磺酸钠可以迅速诱导烷基化肽(C-(IIKK)I-NH、C-G(IIKK)I-NH、C-G(VVKK)V-NH)从纳米纤维到胶束的自组装,同时构象从β-折叠转变为α-螺旋。阳离子表面活性剂十六烷基三甲基溴化铵使脂肽纳米纤维变细,而非离子表面活性剂聚氧乙烯(23)月桂醚(CEO)使纳米纤维更强烈地诱导。脂质化可以调节活性和α-螺旋肽的构象。然后,通过疏水、静电和氢键相互作用,表面活性剂还可以进一步调节烷基化肽的自组装形态。这些结果为调节基于肽的材料功能化中的分子构象提供了有用的策略。