Department of Chemical and Polymer Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
J Biomater Sci Polym Ed. 2020 May;31(7):910-937. doi: 10.1080/09205063.2020.1725863. Epub 2020 Feb 12.
This study aimed to examine the possibility of using insulin orally with gelatin encapsulation to enhance the usefulness of the drug and increase the lifespan of insulin in the body using polylactic-co-glycolic acid (PLGA) nanoparticles alongside gelatin encapsulation. In this regard, PLGA was synthesized ring opening polymerization, and PLGA/insulin nanoparticles were prepared by a modified emulsification-diffusion process. The resulting nanoparticles with various amounts of insulin were fully characterized using FTIR, DSC, DLS, zeta potential, SEM, and glucose uptake methods, with results indicating the interaction between the insulin and PLGA. The process efficiency of encapsulation was higher than 92%, while the encapsulation efficiency of nanoparticles, based on an insulin content of 20 to 40%, was optimized at 93%. According to the thermal studies, the PLGA encapsulation increases the thermal stability of the insulin. The morphological studies showed the fine dispersion of insulin in the PLGA matrix, which we further confirmed by the Kjeldahl method. According to the release studies and kinetics, in-vitro degradation, and particle size analysis, the sample loaded with 30% insulin showed optimum overall properties, and thus it was encapsulated with gelatin followed by coating with aqueous methacrylate coating. Release studies at pH values of 3 and 7.4, alongside the Kjeldahl method and standard dissolution test at pH 5.5, and glucose uptake assay tests clearly showed the capsules featured 3-4 h biodegradation resistance at a lower pH along with the sustained release, making these gelatin-encapsulated nanoparticles promising alternatives for oral applications.[Figure: see text].
本研究旨在探讨通过明胶包封将胰岛素口服化的可能性,以增强药物的实用性,并通过聚乳酸-羟基乙酸共聚物(PLGA)纳米粒子与明胶包封联合使用来延长胰岛素在体内的寿命。在这方面,通过开环聚合合成了 PLGA,并通过改良的乳化-扩散工艺制备了 PLGA/胰岛素纳米粒子。使用傅里叶变换红外光谱(FTIR)、差示扫描量热法(DSC)、动态光散射(DLS)、Zeta 电位、扫描电子显微镜(SEM)和葡萄糖摄取方法对具有不同胰岛素含量的所得纳米粒子进行了全面表征,结果表明胰岛素与 PLGA 之间存在相互作用。包封过程的效率高于 92%,而基于 20-40%胰岛素含量的纳米粒子包封效率优化至 93%。根据热研究,PLGA 包封提高了胰岛素的热稳定性。形态学研究表明胰岛素在 PLGA 基质中呈精细分散状态,我们通过凯氏定氮法进一步证实了这一点。根据释放研究和动力学、体外降解以及粒径分析,负载 30%胰岛素的样品显示出最佳的综合性能,因此用明胶对其进行了包封,随后用水性甲基丙烯酸酯涂层对其进行了涂层。在 pH 值为 3 和 7.4 下进行释放研究,以及使用凯氏定氮法和在 pH 值为 5.5 下的标准溶解试验和葡萄糖摄取测定试验,清楚地表明这些明胶包封的纳米胶囊在较低 pH 值下具有 3-4 小时的生物降解抗性,同时具有持续释放的特点,这使得这些明胶包封的纳米粒子成为口服应用的有前途的替代方案。[图:见正文]。