Suppr超能文献

阐明采用超疏水离子液体掺杂剂的芴-二噻吩基空穴选择性层中的掺杂机制。

Elucidating the Doping Mechanism in Fluorene-Dithiophene-Based Hole Selective Layer Employing Ultrahydrophobic Ionic Liquid Dopant.

作者信息

Harindu Hemasiri Naveen, Kazim Samrana, Calio Laura, Paek Sanghyun, Salado Manuel, Pozzi Gianluca, Lezama Luis, Nazeeruddin Mohammad Khaja, Ahmad Shahzada

机构信息

BCMaterials, Basque Center for Materials, Applications and Nanostructures , Bld. Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n , 48940 Leioa , Spain.

IKERBASQUE , Basque Foundation for Science , Bilbao , 48013 , Spain.

出版信息

ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9395-9403. doi: 10.1021/acsami.0c00818. Epub 2020 Feb 17.

Abstract

Perovskite solar cells have set a new milestone in terms of efficiencies in the thin film photovoltaics category. Long-term stability of perovskite solar cells is of paramount importance but remains a challenging task. The lack of perovskite solar cells stability in real-time operating conditions erodes and impedes commercialization. Further improvements are essential with a view to delivering longer-lasting photovoltaic (PV) performances. An ideal path in this direction will be to identify novel dopants for boosting the conductivity and hole mobility of hole transport materials (HTMs), and by so doing, the usage of hygroscopic and deliquescent additive materials can be avoided. The present work demonstrates the employment of ionic liquids into a dissymmetric fluorene-dithiophene, FDT (2',7'-bis(bis(4-methoxyphenyl)amino) spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene]) based HTM to understand the doping mechanisms. -Heterocyclic hydrophobic ionic liquid, 1-butyl-3-methylpyidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) as p-type dopant for FDT was found to increase the conductivity of FDT, to higher geometrical capacitance, to facilitate homogeneous film formation, and to enhance device stability. Our findings open up a broad range of hole-transport materials to control the degradation of the underlying water-sensitive active layer by substituting a hygroscopic element.

摘要

钙钛矿太阳能电池在薄膜光伏领域的效率方面树立了新的里程碑。钙钛矿太阳能电池的长期稳定性至关重要,但仍然是一项具有挑战性的任务。钙钛矿太阳能电池在实时运行条件下缺乏稳定性,这侵蚀并阻碍了其商业化。为了实现更持久的光伏性能,进一步改进至关重要。朝着这个方向的一条理想途径是识别新型掺杂剂,以提高空穴传输材料(HTM)的电导率和空穴迁移率,这样一来,就可以避免使用吸湿性和潮解性添加剂材料。目前的工作展示了将离子液体应用于一种基于不对称芴 - 二噻吩(FDT,2',7'-双(双(4 - 甲氧基苯基)氨基)螺[环戊[2,1 - b:3,4 - b']二噻吩 - 4,9'-芴])的HTM中,以了解掺杂机制。发现作为FDT的p型掺杂剂的 - 杂环疏水性离子液体1 - 丁基 - 3 - 甲基吡啶双(三氟甲基磺酰)亚胺(BMPTFSI)可提高FDT的电导率,提高几何电容,促进均匀成膜,并增强器件稳定性。我们的研究结果为通过替代吸湿元素来控制底层水敏活性层的降解开辟了广泛的空穴传输材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验