Bilbao Nerea, Martín Cristina, Zhan Gaolei, Martínez-Abadía Marta, Sanz-Matı As Ana, Mateo-Alonso Aurelio, Harvey Jeremy N, Van der Auweraer Mark, Mali Kunal S, De Feyter Steven
Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.
Departamento de Química Física, Facultad de Farmacia , Universidad de Castilla-La Mancha , 02071 Albacete , Spain.
ACS Nano. 2020 Feb 25;14(2):2354-2365. doi: 10.1021/acsnano.9b09520. Epub 2020 Feb 3.
Synthetic two-dimensional polymers (2DPs) obtained from well-defined monomers bottom-up fabrication strategies are promising materials that can extend the realm of inorganic 2D materials. The on-surface synthesis of such 2DPs is particularly popular, however the pathway complexity in the growth of such films formed on solid surfaces is poorly understood. In this contribution, we present a straightforward experimental protocol which allows the synthesis of large-area, defect-free 2DPs based on boroxine linkages at room temperature. We focus on unravelling the multiple pathways available to the polymerizing system for the spatial extension of the covalent bonds. Besides the anticipated 2DP, the system can evolve into self-assembled monolayers of partially fused monodisperse reaction products that are difficult to isolate by conventional synthetic methods or remain in the monomeric state. The access to each pathway can be controlled monomer concentration and the choice of the solvent. Most importantly, the unpolymerized systems do not evolve into the corresponding 2DP upon annealing, indicating the presence of strong kinetic traps. Using high-resolution scanning tunneling microscopy, we show reversibility in the polymerization process where the attachment and the detachment of monomers to 2DP crystallites could be monitored as a function of time. Finally, we show that the way the 2DP grows depends on the choice of the solvent. Using UV-vis absorption and emission spectroscopy, we reveal that the dominant pathway for 2DP growth is in-plane self-condensation of the monomers, whereas in the case of an aprotic solvent, the favored growth mode is π stacking of the monomers.
通过自下而上的精确单体合成策略获得的合成二维聚合物(2DPs)是一类很有前景的材料,能够拓展无机二维材料的范畴。此类2DPs的表面合成尤其受到关注,然而对于在固体表面形成的这种薄膜生长过程中的路径复杂性,人们了解甚少。在本论文中,我们展示了一种简单的实验方案,该方案能够在室温下合成基于硼氧烷键的大面积、无缺陷的2DPs。我们着重于揭示聚合体系在共价键空间扩展方面可用的多种路径。除了预期的2DP之外,该体系还能演变成部分融合的单分散反应产物的自组装单分子层,这些产物难以通过传统合成方法分离,或者保持单体状态。每条路径的走向可以通过单体浓度和溶剂的选择来控制。最重要的是,未聚合的体系在退火后不会演变成相应的2DP,这表明存在强大的动力学陷阱。利用高分辨率扫描隧道显微镜,我们展示了聚合过程的可逆性,其中可以监测单体与2DP微晶的附着和脱离随时间的变化。最后,我们表明2DP的生长方式取决于溶剂的选择。通过紫外-可见吸收和发射光谱,我们揭示2DP生长的主要路径是单体的面内自缩合,而在非质子溶剂的情况下,有利的生长模式是单体的π堆积。