H. Zhu, B. Bao, H. Wei, T. Gao, Y. Chai, C. Zhang, X. Zheng, Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
Clin Orthop Relat Res. 2020 May;478(5):1111-1121. doi: 10.1097/CORR.0000000000001119.
To mitigate the possibility of infection after arthroplasty, intraoperative irrigation is essential to remove contaminating bacteria. Previous studies have demonstrated that irrigation with an EDTA solution before wound closure is superior to irrigation with normal saline in removing contaminating bacteria in a rat model of open fractures. However, the effectiveness of an EDTA solution in a model with a contaminated intra-articular implant remains unclear.
QUESTIONS/PURPOSES: (1) Does irrigation with an EDTA solution decrease the proportion of culture-positive joints compared with normal saline, benzalkonium chloride, and povidone iodine? (2) Is an EDTA solution toxic to cells resident in joints including chondrocytes, osteoblasts, and synovial fibroblasts? (3) Does irrigation with an EDTA solution have adverse effects including arthrofibrosis and hypocalcemia?
We first established a model of contaminated intra-articular implants. Female Sprague-Dawley rats (n = 30 for each treatment group) underwent knee arthrotomy and implantation of a femoral intramedullary wire with 1 mm of intra-articular communication. To simulate bacterial contamination, the inserted wire was inoculated with either Staphylococcus aureus or Escherichia coli. After 1 hour, the wound and implant were irrigated with normal saline, benzalkonium chloride, povidone iodine, or an EDTA solution (1 mM). The animals were euthanized 1 week later, and the distal femur, knee capsule, and implanted wire were harvested for bacterial culture using standard techniques. In this study, we used a well-established animal model of an intra-articular implant and inoculated the implant to simulate the clinical setting of intraoperative contamination. The proportion of culture-positive joints in normal saline, benzalkonium chloride, povidone-iodine, and EDTA groups were compared. The viable cell numbers (chondrocytes, osteoblasts, and synovial fibroblasts) were counted and compared after treatment with either solution. Measurement of blood calcium level and histological examination of the joint were performed to rule out hypocalcemia and arthrofibrosis after EDTA irrigation.
With S. aureus inoculation, EDTA irrigation resulted in fewer culture-positive joints than normal saline (37% [11 of 30] versus 70% [21 of 30]; p = 0.019), benzalkonium chloride (83% [25 of 30]; p < 0.001), and povidone iodine (83% [25 of 30]; p < 0.001) irrigation. Likewise, infection rates for implant inoculation with E. coli were also lower in the EDTA irrigation group (13% [four of 30]) than in the normal saline (60% [18 of 30]; p < 0.001), benzalkonium chloride (77% [23 of 30]; p < 0.001), and povidone iodine (80% [24 of 30]; p < 0.001) groups. Between normal saline control and EDTA, there were no differences in cell viability in chondrocytes (normal saline: 98% ± 18%; EDTA: 105% ± 18%; p = 0.127), osteoblasts (normal saline: 102 ± 19%, EDTA: 103 ± 14%; p = 0.835), and synovial fibroblasts (normal saline: 101% ± 21%, EDTA: 110% ± 13%; p = 0.073). EDTA irrigation did not result in hypocalcemia (before irrigation: 2.21 ± 0.32 mmol/L, after irrigation: 2.23 ± 0.34 mmol/L; p = 0.822); and we observed no arthrofibrosis in 30 histologic samples.
In a rat model of a bacteria-contaminated intra-articular implants, intraoperative irrigation with 1 mmol/L of an EDTA solution was superior to normal saline, 0.03% benzalkonium chloride, and 0.3% povidone iodine in preventing surgical-site infection and caused no adverse effects including death of resident cells, arthrofibrosis, and hypocalcemia. Future studies should seek to replicate our findings in other animal models, perhaps such as dog and goat.
If other animal models substantiate the efficacy and safety of the EDTA solution, clinical trials would be warranted to determine whether the use of an EDTA irrigation solution might reduce the risk of periprosthetic joint infections in patients compared with traditional irrigation solutions.
为了降低关节置换术后感染的可能性,术中冲洗对于去除污染的细菌至关重要。先前的研究表明,与生理盐水冲洗相比,在开放性骨折的大鼠模型中,在关闭伤口前用 EDTA 溶液冲洗可以更好地去除污染的细菌。然而,EDTA 溶液在关节内植入物污染模型中的有效性尚不清楚。
问题/目的:(1)与生理盐水、苯扎氯铵和聚维酮碘相比,EDTA 溶液冲洗是否会降低培养阳性关节的比例?(2)EDTA 溶液对包括软骨细胞、成骨细胞和滑膜成纤维细胞在内的关节内驻留细胞有毒性吗?(3)EDTA 溶液冲洗是否会产生不良影响,包括关节粘连和低钙血症?
我们首先建立了关节内植入物污染模型。每组 30 只雌性 Sprague-Dawley 大鼠(每组 30 只)接受膝关节切开术,并植入带有 1 毫米关节内沟通的股骨髓内钢丝。为了模拟细菌污染,插入的钢丝接种了金黄色葡萄球菌或大肠杆菌。1 小时后,用生理盐水、苯扎氯铵、聚维酮碘或 EDTA 溶液(1mM)冲洗伤口和植入物。1 周后处死动物,采集远端股骨、膝关节囊和植入的钢丝,用标准技术进行细菌培养。在这项研究中,我们使用了一种成熟的关节内植入物动物模型,并接种了植入物,以模拟术中污染的临床情况。比较生理盐水、苯扎氯铵、聚维酮碘和 EDTA 组中培养阳性关节的比例。比较两种溶液处理后软骨细胞、成骨细胞和滑膜成纤维细胞的活菌数。测量血钙水平并进行关节组织学检查,以排除 EDTA 冲洗后低钙血症和关节粘连。
金黄色葡萄球菌接种后,EDTA 冲洗组的培养阳性关节比例低于生理盐水组(37%[30 个中的 11 个]与 70%[30 个中的 21 个];p=0.019)、苯扎氯铵组(83%[30 个中的 25 个];p<0.001)和聚维酮碘组(83%[30 个中的 25 个];p<0.001)。同样,大肠杆菌接种的植入物感染率在 EDTA 冲洗组也较低(13%[30 个中的 4 个]),低于生理盐水组(60%[30 个中的 18 个];p<0.001)、苯扎氯铵组(77%[30 个中的 23 个];p<0.001)和聚维酮碘组(80%[30 个中的 24 个];p<0.001)。在生理盐水对照组和 EDTA 之间,软骨细胞(生理盐水:105%±18%;EDTA:105%±18%;p=0.127)、成骨细胞(生理盐水:102%±19%,EDTA:103%±14%;p=0.835)和滑膜成纤维细胞(生理盐水:101%±21%,EDTA:110%±13%;p=0.073)的细胞活力无差异。EDTA 冲洗不会导致低钙血症(冲洗前:2.21±0.32mmol/L,冲洗后:2.23±0.34mmol/L;p=0.822);30 个组织学样本中未观察到关节粘连。
在大鼠关节内污染植入物模型中,与生理盐水、0.03%苯扎氯铵和 0.3%聚维酮碘相比,1mmol/L 的 EDTA 溶液在预防手术部位感染方面优于术中冲洗,且不会引起驻留细胞死亡、关节粘连和低钙血症等不良反应。未来的研究应在其他动物模型(如狗和山羊)中复制我们的发现。
如果其他动物模型证实 EDTA 溶液的疗效和安全性,那么进行临床试验将是合理的,以确定与传统冲洗溶液相比,EDTA 冲洗溶液是否可能降低患者假体周围关节感染的风险。