Suppr超能文献

EAgLE:等效声级估计器提案。

EAgLE: Equivalent Acoustic Level Estimator Proposal.

作者信息

Guarnaccia Claudio

机构信息

Department of Civil Engineering, University of Salerno, I-84084 Fisciano, Italy.

出版信息

Sensors (Basel). 2020 Jan 27;20(3):701. doi: 10.3390/s20030701.

Abstract

Road infrastructures represent a key point in the development of smart cities. In any case, the environmental impact of road traffic should be carefully assessed. Acoustic noise is one of the most important issues to be monitored by means of sound level measurements. When a large measurement campaign is not possible, road traffic noise predictive models (RTNMs) can be used. Standard RTNMs present in literature usually require in input several information about the traffic, such as flows of vehicles, percentage of heavy vehicles, average speed, etc. Many times, the lack of information about this large set of inputs is a limitation to the application of predictive models on a large scale. In this paper, a new methodology, easy to be implemented in a sensor concept, based on video processing and object detection tools, is proposed: the Equivalent Acoustic Level Estimator (EAgLE). The input parameters of EAgLE are detected analyzing video images of the area under study. Once the number of vehicles, the typology (light or heavy vehicle), and the speeds are recorded, the sound power level of each vehicle is computed, according to the EU recommended standard model (CNOSSOS-EU), and the Sound Exposure Level (SEL) of each transit is estimated at the receiver. Finally, summing up the contributions of all the vehicles, the continuous equivalent level, , on a given time range can be assessed. A preliminary test of the EAgLE technique is proposed in this paper on two sample measurements performed in proximity of an Italian highway. The results will show excellent performances in terms of agreement with the measured and comparing with other RTNMs. These satisfying results, once confirmed by a larger validation test, will open the way to the development of a dedicated sensor, embedding the EAgLE model, with possible interesting applications in smart cities and road infrastructures monitoring. These sites, in fact, are often equipped (or can be equipped) with a network of monitoring video cameras for safety purposes or for fining/tolling, that, once the model is properly calibrated and validated, can be turned in a large scale network of noise estimators.

摘要

道路基础设施是智慧城市发展的关键要素。无论如何,道路交通对环境的影响都应得到仔细评估。噪声是需要通过声级测量进行监测的最重要问题之一。当无法开展大规模测量活动时,可以使用道路交通噪声预测模型(RTNMs)。文献中现有的标准RTNMs通常需要输入若干交通信息,如车辆流量、重型车辆百分比、平均速度等。很多时候,缺乏关于这一大组输入信息是预测模型大规模应用的一个限制因素。本文提出了一种基于视频处理和目标检测工具、易于在传感器概念中实现的新方法:等效声级估计器(EAgLE)。通过分析研究区域的视频图像来检测EAgLE的输入参数。一旦记录了车辆数量、类型(轻型或重型车辆)和速度,便根据欧盟推荐的标准模型(CNOSSOS-EU)计算每辆车的声功率级,并在接收器处估计每次通行的声暴露级(SEL)。最后,将所有车辆的贡献相加,便可评估给定时间范围内的连续等效声级。本文针对在意大利一条高速公路附近进行的两次样本测量,对EAgLE技术进行了初步测试。结果将显示,在与测量值的一致性以及与其他RTNMs的比较方面,EAgLE具有出色的性能。一旦通过更大规模的验证测试得到证实,这些令人满意的结果将为开发嵌入EAgLE模型的专用传感器开辟道路,该传感器在智慧城市和道路基础设施监测中可能具有有趣的应用。事实上,这些场所通常(或可以)配备用于安全目的或罚款/收费的监控摄像机网络,一旦该模型得到适当校准和验证,这些摄像机网络便可转变为大规模的噪声估计器网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abbd/7038443/a089582174cc/sensors-20-00701-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验