Suppr超能文献

从多元时间序列到多层复杂网络的相互表征

Reciprocal characterization from multivariate time series to multilayer complex networks.

作者信息

Zhao Yi, Peng Xiaoyi, Small Michael

机构信息

Harbin Institute of Technology, Shenzhen, 518055 Guangdong, China.

School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Chaos. 2020 Jan;30(1):013137. doi: 10.1063/1.5112799.

Abstract

Various transformations from time series to complex networks have recently gained significant attention. These transformations provide an alternative perspective to better investigate complex systems. We present a transformation from multivariate time series to multilayer networks for their reciprocal characterization. This transformation ensures that the underlying geometrical features of time series are preserved in their network counterparts. We identify underlying dynamical transitions of the time series through statistics of the structure of the corresponding networks. Meanwhile, this allows us to propose the concept of interlayer entropy to measure the coupling strength between the layers of a network. Specifically, we prove that under mild conditions, for the given transformation method, the application of interlayer entropy in networks is equivalent to transfer entropy in time series. Interlayer entropy is utilized to describe the information flow in a multilayer network.

摘要

最近,从时间序列到复杂网络的各种变换受到了广泛关注。这些变换为更好地研究复杂系统提供了一个替代视角。我们提出了一种从多元时间序列到多层网络的变换,用于它们的相互表征。这种变换确保时间序列的潜在几何特征在其网络对应物中得以保留。我们通过相应网络结构的统计来识别时间序列的潜在动态转变。同时,这使我们能够提出层间熵的概念,以测量网络各层之间的耦合强度。具体而言,我们证明在温和条件下,对于给定的变换方法,网络中层间熵的应用等同于时间序列中的转移熵。层间熵被用于描述多层网络中的信息流。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验