Suppr超能文献

使用非接触式设备采集的声音数据预测呼吸暂停-低通气指数。

Prediction of Apnea-Hypopnea Index Using Sound Data Collected by a Noncontact Device.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi-do, Korea.

Mobile Communications Business, Samsung Electronics, Suwon, Korea.

出版信息

Otolaryngol Head Neck Surg. 2020 Mar;162(3):392-399. doi: 10.1177/0194599819900014. Epub 2020 Feb 4.

Abstract

OBJECTIVE

To predict the apnea-hypopnea index (AHI) in patients with obstructive sleep apnea (OSA) using data from breathing sounds recorded using a noncontact device during sleep.

STUDY DESIGN

Prospective cohort study.

SETTING

Tertiary referral hospital.

SUBJECT AND METHODS

Audio recordings during sleep were performed using an air-conduction microphone during polysomnography. Breathing sounds recorded from all sleep stages were analyzed. After noise reduction preprocessing, the audio data were segmented into 5-second windows and sound features were extracted. Estimation of AHI by regression analysis was performed using a Gaussian process, support vector machine, random forest, and simple linear regression, along with 10-fold cross-validation.

RESULTS

In total, 116 patients who underwent attended, in-laboratory, full-night polysomnography were included. Overall, random forest resulted in the highest performance with the highest correlation coefficient (0.83) and least mean absolute error (9.64 events/h) and root mean squared error (13.72 events/h). Other models resulted in somewhat lower but similar performances, with correlation coefficients ranging from 0.74 to 0.79. The estimated AHI tended to be underestimated as the severity of OSA increased. Regarding bias and precision, estimation performances in the severe OSA subgroup were the lowest, regardless of the model used. Among sound features, derivative of the area methods of moments of overall standard deviation demonstrated the highest correlation with AHI.

CONCLUSION

AHI was fairly predictable by using data from breathing sounds generated during sleep. The prediction model may be useful not only for prescreening but also for follow-up after treatment in patients with OSA.

摘要

目的

利用睡眠期间使用非接触式设备记录的呼吸音数据,预测阻塞性睡眠呼吸暂停(OSA)患者的呼吸暂停低通气指数(AHI)。

研究设计

前瞻性队列研究。

设置

三级转诊医院。

受试者和方法

在多导睡眠图期间使用空气传导麦克风进行睡眠期间的音频记录。分析记录的所有睡眠阶段的呼吸声。经过降噪预处理后,将音频数据分成 5 秒的窗口,并提取声音特征。使用高斯过程、支持向量机、随机森林和简单线性回归进行回归分析,同时进行 10 折交叉验证,以估计 AHI。

结果

共纳入 116 例接受过有监护、在实验室进行的、整夜多导睡眠图检查的患者。总体而言,随机森林的表现最佳,具有最高的相关系数(0.83)和最低的平均绝对误差(9.64 次/小时)和均方根误差(13.72 次/小时)。其他模型的表现稍低但相似,相关系数范围在 0.74 到 0.79 之间。随着 OSA 严重程度的增加,估计的 AHI 趋于低估。关于偏差和精度,无论使用哪种模型,严重 OSA 亚组的估计性能均最低。在声音特征中,整体标准偏差的面积矩导数方法与 AHI 的相关性最高。

结论

使用睡眠期间产生的呼吸音数据可以相当准确地预测 AHI。该预测模型不仅可用于 OSA 患者的初步筛选,也可用于治疗后的随访。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验