Department of Endocrinology, Mercy Hospital, Springfield, Missouri, USA.
Mercy Research Department, Springfield, Missouri, USA.
Thyroid. 2020 Jun;30(6):878-884. doi: 10.1089/thy.2019.0752. Epub 2020 Mar 11.
Current classification systems for thyroid nodules are very subjective. Artificial intelligence (AI) algorithms have been used to decrease subjectivity in medical image interpretation. One out of 2 women over the age of 50 years may have a thyroid nodule and at present the only way to exclude malignancy is through invasive procedures for those that are suspicious on ultrasonography. Hence, there exists a need for noninvasive objective classification of thyroid nodules. Some cancers have benign appearance on ultrasonogram. Hence, we decided to create an image similarity algorithm rather than image classification algorithm. Ultrasound images of thyroid nodules from patients who underwent either biopsy or thyroid surgery from February 2012 to February 2017 in our institution were used to create AI models. Nodules were excluded if there was no definitive diagnosis of it being benign or malignant. A total of 482 nodules met the inclusion criteria and all available images from these nodules were used to create the AI models. Later, these AI models were used to test 103 thyroid nodules that underwent biopsy or surgery from March 2017 to July 2018. Negative predictive value (NPV) of the image similarity model was 93.2%. Sensitivity, specificity, positive predictive value (PPV), and accuracy of the model were 87.8%, 78.5%, 65.9%, and 81.5%, respectively. When compared with published results of ultrasound thyroid cancer risk stratification systems, our image similarity model had comparable NPV with better sensitivity, specificity, and PPV. By using image similarity AI models, we can decrease subjectivity and decrease the number of unnecessary biopsies. Using image similarity AI model, we were able to create an explainable AI model that increases physician's confidence in the predictions.
目前的甲状腺结节分类系统非常主观。人工智能 (AI) 算法已被用于减少医学图像解释中的主观性。每 2 个 50 岁以上的女性中就有 1 个可能患有甲状腺结节,目前排除恶性肿瘤的唯一方法是对超声检查可疑的结节进行有创性检查。因此,需要对甲状腺结节进行非侵入性的客观分类。一些癌症在超声检查中表现为良性。因此,我们决定创建一种图像相似性算法,而不是图像分类算法。
我们使用 2012 年 2 月至 2017 年 2 月期间在我院接受活检或甲状腺手术的甲状腺结节患者的超声图像来创建 AI 模型。如果没有明确诊断为良性或恶性,则排除结节。共有 482 个结节符合纳入标准,所有这些结节的可用图像均用于创建 AI 模型。然后,我们使用这些 AI 模型来测试 2017 年 3 月至 2018 年 7 月期间接受活检或手术的 103 个甲状腺结节。
图像相似性模型的阴性预测值 (NPV) 为 93.2%。该模型的灵敏度、特异性、阳性预测值 (PPV) 和准确性分别为 87.8%、78.5%、65.9%和 81.5%。
与已发表的超声甲状腺癌风险分层系统的结果相比,我们的图像相似性模型具有可比的 NPV,同时具有更高的灵敏度、特异性和 PPV。通过使用图像相似性 AI 模型,我们可以减少主观性并减少不必要的活检数量。使用图像相似性 AI 模型,我们创建了一个可解释的 AI 模型,增加了医生对预测的信心。