Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
Accademia Nazionale dei Lincei, Palazzo Corsini, Via della Lungara, Roma, Italy.
Curr Protein Pept Sci. 2020;21(6):553-572. doi: 10.2174/1389203721666200203151414.
Hemoglobin and myoglobin have been considered for a long time the paradigmatic model systems for protein function, to the point of being defined the "hydrogen atom[s] of biology". Given this privileged position and the huge amount of quantitative information available on these proteins, the red blood cell might appear as the model system and"hydrogen atom" of system biology. Indeed, since the red cell's main function is O2 transport by hemoglobin, the gap between the protein and the cell may appear quite small. Yet, a surprisingly large amount of detailed biochemical information is required for the modelization of the respiratory properties of the erythrocyte. This problem is compounded if modelization aims at uncovering or explaining evolutionarily selected functional properties of hemoglobin. The foremost difficulty lies in the fact that hemoglobins having different intrinsic properties and relatively ancient evolutionary divergence may behave similarly in the complex milieu of blood, whereas very similar hemoglobins sharing a substantial sequence similarity may present important functional differences because of the mutation of a few key residues. Thus, the functional properties of hemoglobin and blood may reflect more closely the recent environmental challenges than the remote evolutionary history of the animal. We summarize in this review the case of hemoglobins from mammals, in an attempt to provide a reasoned summary of their complexity that, we hope, may be of help to scientists interested in the quantitative exploration of the evolutionary physiology of respiration. Indeed the basis of a meaningful modelization of the red cell requires a large amount of information collected in painstaking and often forgotten studies of the biochemical properties of hemoglobin carried out over more than a century.
血红蛋白和肌红蛋白长期以来一直被视为蛋白质功能的典型模式系统,甚至被定义为“生物学中的氢原子”。鉴于这种特殊地位和大量关于这些蛋白质的定量信息,红细胞可能看起来像是系统生物学的模型系统和“氢原子”。事实上,由于红细胞的主要功能是通过血红蛋白运输氧气,因此蛋白质和细胞之间的差距似乎很小。然而,为了模拟红细胞的呼吸特性,需要大量详细的生化信息。如果模型化旨在揭示或解释血红蛋白的进化选择功能特性,那么这个问题就会更加复杂。最主要的困难在于,具有不同内在特性和相对古老进化分歧的血红蛋白在血液的复杂环境中可能表现相似,而具有高度序列相似性的非常相似的血红蛋白可能由于少数关键残基的突变而表现出重要的功能差异。因此,血红蛋白和血液的功能特性可能更能反映动物的近期环境挑战,而不是其遥远的进化历史。我们在这篇综述中总结了哺乳动物的血红蛋白情况,试图提供对其复杂性的合理总结,希望能为对呼吸进化生理学进行定量探索感兴趣的科学家提供帮助。事实上,红细胞的有意义的模型化需要大量的信息,这些信息来自一个多世纪以来对血红蛋白生化特性的艰苦而往往被遗忘的研究。