Suppr超能文献

通过多路复用拉曼成像对单个活细胞上脂肪酸受体相互作用进行时空动态监测。

Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging.

机构信息

Department of Biological Engineering, Utah State University, Logan, UT 84322-4105.

Department of Internal Medicine, University of Central Florida, Orlando, FL 32827-7408.

出版信息

Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3518-3527. doi: 10.1073/pnas.1916238117. Epub 2020 Feb 3.

Abstract

Numerous fatty acid receptors have proven to play critical roles in normal physiology. Interactions among these receptor types and their subsequent membrane trafficking has not been fully elucidated, due in part to the lack of efficient tools to track these cellular events. In this study, we fabricated the surface-enhanced Raman scattering (SERS)-based molecular sensors for detection of two putative fatty acid receptors, G protein-coupled receptor 120 (GPR120) and cluster of differentiation 36 (CD36), in a spatiotemporal manner in single cells. These SERS probes allowed multiplex detection of GPR120 and CD36, as well as a peak that represented the cell. This multiplexed sensing system enabled the real-time monitoring of fatty acid-induced receptor activation and dynamic distributions on the cell surface, as well as tracking of the receptors' internalization processes on the addition of fatty acid. Increased SERS signals were seen in engineered HEK293 cells with higher fatty acid concentrations, while decreased responses were found in cell line TBDc1, suggesting that the endocytic process requires innate cellular components. SERS mapping results confirm that GPR120 is the primary receptor and may work synergistically with CD36 in sensing polyunsaturated fatty acids and promoting Ca mobilization, further activating the process of fatty acid uptake. The ability to detect receptors' locations and monitor fatty acid-induced receptor redistribution demonstrates the specificity and potential of our multiplexed SERS imaging platform in the study of fatty acid-receptor interactions and might provide functional information for better understanding their roles in fat intake and development of fat-induced obesity.

摘要

许多脂肪酸受体已被证明在正常生理中发挥关键作用。由于缺乏有效的工具来跟踪这些细胞事件,这些受体类型之间的相互作用及其随后的膜运输尚未完全阐明。在这项研究中,我们制备了基于表面增强拉曼散射(SERS)的分子传感器,用于以时空方式在单个细胞中检测两种假定的脂肪酸受体,G 蛋白偶联受体 120(GPR120)和分化簇 36(CD36)。这些 SERS 探针允许同时检测 GPR120 和 CD36,以及代表细胞的峰。这种多重传感系统能够实时监测脂肪酸诱导的受体激活和细胞表面上的动态分布,以及跟踪脂肪酸添加时受体的内化过程。在具有更高脂肪酸浓度的工程 HEK293 细胞中,SERS 信号增强,而在细胞系 TBDc1 中,响应降低,这表明内吞过程需要固有细胞成分。SERS 图谱结果证实 GPR120 是主要受体,并且可能与 CD36 协同作用,以感应多不饱和脂肪酸并促进 Ca 动员,进一步激活脂肪酸摄取过程。检测受体位置和监测脂肪酸诱导的受体再分布的能力证明了我们的多重 SERS 成像平台在研究脂肪酸受体相互作用方面的特异性和潜力,并可能为更好地理解它们在脂肪摄入和脂肪诱导肥胖中的作用提供功能信息。

相似文献

1
Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3518-3527. doi: 10.1073/pnas.1916238117. Epub 2020 Feb 3.
3
Ca2+ signaling in taste bud cells and spontaneous preference for fat: unresolved roles of CD36 and GPR120.
Biochimie. 2014 Jan;96:8-13. doi: 10.1016/j.biochi.2013.06.005. Epub 2013 Jun 15.
6
Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index.
Am J Physiol Gastrointest Liver Physiol. 2014 Nov 15;307(10):G958-67. doi: 10.1152/ajpgi.00134.2014. Epub 2014 Sep 25.
7
CD36 and GPR120 mediated orogustatory perception of dietary lipids and its physiological implication in the pygmy mouse Mus booduga.
J Anim Physiol Anim Nutr (Berl). 2022 Nov;106(6):1408-1419. doi: 10.1111/jpn.13755. Epub 2022 Jul 21.
9
Orosensory Detection of Dietary Fatty Acids Is Altered in CB₁R Mice.
Nutrients. 2018 Sep 21;10(10):1347. doi: 10.3390/nu10101347.
10
Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):131-135. doi: 10.1016/j.bbrc.2017.10.125. Epub 2017 Nov 4.

引用本文的文献

1
Droplet Detection and Sorting System in Microfluidics: A Review.
Micromachines (Basel). 2022 Dec 30;14(1):103. doi: 10.3390/mi14010103.
2
Surface-enhanced Raman scattering: An emerging tool for sensing cellular function.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1802. doi: 10.1002/wnan.1802. Epub 2022 May 5.
3
A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems.
RSC Chem Biol. 2021 Jul 14;2(5):1415-1429. doi: 10.1039/d1cb00116g. eCollection 2021 Oct 7.
4
Targeting lipid GPCRs to treat type 2 diabetes mellitus - progress and challenges.
Nat Rev Endocrinol. 2021 Mar;17(3):162-175. doi: 10.1038/s41574-020-00459-w. Epub 2021 Jan 25.
5
Imaging of PD-L1 in single cancer cells by SERS-based hyperspectral analysis.
Biomed Opt Express. 2020 Oct 8;11(11):6197-6210. doi: 10.1364/BOE.401142. eCollection 2020 Nov 1.

本文引用的文献

2
Application of nanoparticles in cancer detection by Raman scattering based techniques.
Nano Rev Exp. 2017 Dec 19;9(1):1373551. doi: 10.1080/20022727.2017.1373551. eCollection 2018.
3
Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection.
Nat Commun. 2018 Aug 3;9(1):3065. doi: 10.1038/s41467-018-05237-x.
4
Surface-enhanced Raman nanoparticles for tumor theranostics applications.
Acta Pharm Sin B. 2018 May;8(3):349-359. doi: 10.1016/j.apsb.2018.03.007. Epub 2018 Mar 26.
5
Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization.
J Lipid Res. 2018 Jul;59(7):1084-1093. doi: 10.1194/jlr.R082933. Epub 2018 Apr 7.
6
Intramolecular and Intermolecular FRET Sensors for GPCRs - Monitoring Conformational Changes and Beyond.
Trends Pharmacol Sci. 2018 Feb;39(2):123-135. doi: 10.1016/j.tips.2017.10.011. Epub 2017 Nov 25.
7
Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis.
PLoS One. 2017 Nov 17;12(11):e0186672. doi: 10.1371/journal.pone.0186672. eCollection 2017.
8
Trends in GPCR drug discovery: new agents, targets and indications.
Nat Rev Drug Discov. 2017 Dec;16(12):829-842. doi: 10.1038/nrd.2017.178. Epub 2017 Oct 27.
9
FFA4/GPR120: Pharmacology and Therapeutic Opportunities.
Trends Pharmacol Sci. 2017 Sep;38(9):809-821. doi: 10.1016/j.tips.2017.06.006. Epub 2017 Jul 19.
10
The overall fatty acid absorption controlled by basolateral chylomicron excretion under regulation of p-JNK1.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Sep;1862(9):917-928. doi: 10.1016/j.bbalip.2017.05.013. Epub 2017 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验