Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
J Bacteriol. 2020 Apr 9;202(9). doi: 10.1128/JB.00541-19.
In , citrate-mediated iron transport is a key nonheme pathway for the acquisition of iron. Binding of ferric citrate to the outer membrane protein FecA induces a signal cascade that ultimately activates the cytoplasmic sigma factor FecI, resulting in transcription of the ferric citrate transport genes. Central to this process is signal transduction mediated by the inner membrane protein FecR. FecR spans the inner membrane through a single transmembrane helix, which is flanked by cytoplasm- and periplasm-orientated moieties at the N and C termini. The transmembrane helix of FecR resembles a twin-arginine signal sequence, and the substitution of the paired arginine residues of the consensus motif decouples the FecR-FecI signal cascade, rendering the cells unable to activate transcription of the operon when grown on ferric citrate. Furthermore, the fusion of beta-lactamase C-terminal to the FecR transmembrane helix results in translocation of the C-terminal domain that is dependent on the twin-arginine translocation (Tat) system. Our findings demonstrate that FecR belongs to a select group of bitopic inner membrane proteins that contain an internal twin-arginine signal sequence. Iron is essential for nearly all living organisms due to its role in metabolic processes and as a cofactor for many enzymes. The FecRI signal transduction pathway regulates citrate-mediated iron import in many Gram-negative bacteria, including The interactions of FecR with the outer membrane protein FecA and cytoplasmic anti-sigma factor FecI have been extensively studied. However, the mechanism by which FecR inserts into the membrane has not previously been reported. In this study, we demonstrate that the targeting of FecR to the cytoplasmic membrane is dependent on the Tat system. As such, FecR represents a new class of bitopic Tat-dependent membrane proteins with an internal twin-arginine signal sequence.
在 ,柠檬酸介导的铁转运是获取铁的关键非血红素途径。三价柠檬酸与外膜蛋白 FecA 的结合诱导信号级联反应,最终激活细胞质σ因子 FecI,导致 铁柠檬酸转运基因的转录。这一过程的核心是由内膜蛋白 FecR 介导的信号转导。FecR 通过单个跨膜螺旋跨越内膜,该螺旋的 N 端和 C 端分别由细胞质和周质定向部分侧翼。FecR 的跨膜螺旋类似于双精氨酸信号序列,并且共识基序中配对精氨酸残基的取代使 FecR-FecI 信号级联脱耦,使得细胞在生长于柠檬酸铁时无法激活 操纵子的转录。此外,β-内酰胺酶 C 末端与 FecR 跨膜螺旋的融合导致 C 末端结构域的易位,该易位依赖于双精氨酸易位(Tat)系统。我们的发现表明,FecR 属于一组具有内部双精氨酸信号序列的选择性双拓扑内膜蛋白。由于其在代谢过程中的作用以及作为许多酶的辅助因子,铁对于几乎所有生物体都是必需的。FecRI 信号转导途径调节许多革兰氏阴性菌中的柠檬酸介导的铁摄取,包括 FecR 与外膜蛋白 FecA 和细胞质抗 σ 因子 FecI 的相互作用已得到广泛研究。然而,FecR 插入膜的机制以前尚未报道。在这项研究中,我们证明了 FecR 靶向细胞质膜依赖于 Tat 系统。因此,FecR 代表了一类新的双拓扑 Tat 依赖性膜蛋白,具有内部双精氨酸信号序列。