Jung Sung Won, Ryu Sae Hee, Shin Woo Jong, Sohn Yeongsup, Huh Minjae, Koch Roland J, Jozwiak Chris, Rotenberg Eli, Bostwick Aaron, Kim Keun Su
Department of Physics, Yonsei University, Seoul, Korea.
Diamond Light Source, Didcot, UK.
Nat Mater. 2020 Mar;19(3):277-281. doi: 10.1038/s41563-019-0590-2. Epub 2020 Feb 3.
Semiconductor devices rely on the charge and spin of electrons, but there is another electronic degree of freedom called pseudospin in a two-level quantum system such as a crystal consisting of two sublattices. A potential way to exploit the pseudospin of electrons in pseudospintronics is to find quantum matter with tunable and sizeable pseudospin polarization. Here, we propose a bipolar pseudospin semiconductor, where the electron and hole states have opposite net pseudospin polarization. We experimentally identify such states in anisotropic honeycomb crystal-black phosphorus. By sublattice interference of photoelectrons, we find bipolar pseudospin polarization greater than 95% that is stable at room temperature. This pseudospin polarization is identified as a consequence of Dirac cones merged in the highly anisotropic honeycomb system. The bipolar pseudospin semiconductor, which is a pseudospin analogue of magnetic semiconductors, is not only interesting in itself, but also might be useful for pseudospintronics.
半导体器件依赖于电子的电荷和自旋,但在由两个子晶格组成的晶体等两能级量子系统中,还存在另一种称为赝自旋的电子自由度。在赝自旋电子学中利用电子赝自旋的一种潜在方法是寻找具有可调谐且可观赝自旋极化的量子物质。在此,我们提出一种双极赝自旋半导体,其中电子和空穴态具有相反的净赝自旋极化。我们通过实验在各向异性蜂窝晶体——黑磷中识别出了此类状态。通过光电子的子晶格干涉,我们发现双极赝自旋极化大于95%,且在室温下稳定。这种赝自旋极化被确定为是高度各向异性蜂窝系统中狄拉克锥合并的结果。双极赝自旋半导体作为磁性半导体的赝自旋类似物,不仅本身很有趣,而且可能对赝自旋电子学有用。