Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
Med Phys. 2020 Apr;47(4):1775-1785. doi: 10.1002/mp.14066. Epub 2020 Feb 29.
PURPOSE: Segmentation of left ventricular myocardium (LVM) in coronary computed tomography angiography (CCTA) is important for diagnosis of cardiovascular diseases. Due to poor image contrast and large variation in intensity and shapes, LVM segmentation for CCTA is a challenging task. The purpose of this work is to develop a region-based deep learning method to automatically detect and segment the LVM solely based on CCTA images. METHODS: We developed a 3D deeply supervised U-Net, which incorporates attention gates (AGs) to focus on the myocardial boundary structures, to segment LVM contours from CCTA. The deep attention U-Net (DAU-Net) was trained on the patients' CCTA images, with a manual contour-derived binary mask used as the learning-based target. The network was supervised by a hybrid loss function, which combined logistic loss and Dice loss to simultaneously measure the similarities and discrepancies between the prediction and training datasets. To evaluate the accuracy of the segmentation, we retrospectively investigated 100 patients with suspected or confirmed coronary artery disease (CAD). The LVM volume was segmented by the proposed method and compared with physician-approved clinical contours. Quantitative metrics used were Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), residual mean square distance (RMSD), the center of mass distance (CMD), and volume difference (VOD). RESULTS: The proposed method created contours with very good agreement to the ground truth contours. Our proposed segmentation approach is benchmarked primarily using fivefold cross validation. Model prediction correlated and agreed well with manual contour. The mean DSC of the contours delineated by our method was 91.6% among all patients. The resultant HD was 6.840 ± 4.410 mm. The proposed method also resulted in a small CMD (1.058 ± 1.245 mm) and VOD (1.640 ± 1.777 cc). Among all patients, the MSD and RMSD were 0.433 ± 0.209 mm and 0.724 ± 0.375 mm, respectively, between ground truth and LVM volume resulting from the proposed method. CONCLUSIONS: We developed a novel deep learning-based approach for the automated segmentation of the LVM on CCTA images. We demonstrated the high accuracy of the proposed learning-based segmentation method through comparison with ground truth contour of 100 clinical patient cases using six quantitative metrics. These results show the potential of using automated LVM segmentation for computer-aided delineation of CADs in the clinical setting.
目的:在冠状动脉计算机断层血管造影术(CCTA)中分割左心室心肌(LVM)对于心血管疾病的诊断很重要。由于图像对比度差,强度和形状变化大,因此 CCTA 中的 LVM 分割是一项具有挑战性的任务。本研究旨在开发一种基于区域的深度学习方法,仅基于 CCTA 图像自动检测和分割 LVM。
方法:我们开发了一种 3D 深度监督 U-Net,该网络结合了注意力门(AG)以专注于心肌边界结构,从而从 CCTA 中分割 LVM 轮廓。基于深度学习的 U-Net(DAU-Net)在患者的 CCTA 图像上进行了训练,使用手动轮廓生成的二进制掩模作为学习目标。该网络由混合损失函数进行监督,该函数结合了逻辑损失和 Dice 损失,以同时测量预测数据集和训练数据集之间的相似性和差异。为了评估分割的准确性,我们回顾性地研究了 100 名疑似或确诊为冠状动脉疾病(CAD)的患者。使用所提出的方法对 LVM 体积进行分割,并与医师批准的临床轮廓进行比较。使用的定量指标包括 Dice 相似系数(DSC),Hausdorff 距离(HD),平均表面距离(MSD),残差均方距离(RMSD),质心距离(CMD)和体积差(VOD)。
结果:所提出的方法创建的轮廓与真实轮廓非常吻合。我们提出的分割方法主要通过五折交叉验证进行基准测试。模型预测与手动轮廓相关且吻合良好。在所有患者中,我们方法所描绘的轮廓的平均 DSC 为 91.6%。所得的 HD 为 6.840±4.410mm。该方法还产生了较小的 CMD(1.058±1.245mm)和 VOD(1.640±1.777cc)。在所有患者中,在与所提出的方法产生的地面真实 LVM 体积之间,MSD 和 RMSD 分别为 0.433±0.209mm 和 0.724±0.375mm。
结论:我们开发了一种基于深度学习的新方法,用于自动分割 CCTA 图像上的 LVM。通过使用六种定量指标,与 100 例临床患者的真实轮廓进行比较,我们证明了所提出的基于学习的分割方法的高精度。这些结果表明,在临床环境中,使用自动 LVM 分割来辅助 CAD 的计算机辅助描绘具有潜力。
Front Cardiovasc Med. 2024-1-22
J Cardiovasc Dev Dis. 2023-12-4
Diagnostics (Basel). 2022-10-17
J Appl Clin Med Phys. 2022-4
J Cardiovasc Comput Tomogr. 2021