文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 3D 深度监督注意 U-Net 的冠状动脉 CT 血管造影自动左心室心肌分割;CT 心肌分割。

Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.

机构信息

Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.

出版信息

Med Phys. 2020 Apr;47(4):1775-1785. doi: 10.1002/mp.14066. Epub 2020 Feb 29.


DOI:10.1002/mp.14066
PMID:32017118
Abstract

PURPOSE: Segmentation of left ventricular myocardium (LVM) in coronary computed tomography angiography (CCTA) is important for diagnosis of cardiovascular diseases. Due to poor image contrast and large variation in intensity and shapes, LVM segmentation for CCTA is a challenging task. The purpose of this work is to develop a region-based deep learning method to automatically detect and segment the LVM solely based on CCTA images. METHODS: We developed a 3D deeply supervised U-Net, which incorporates attention gates (AGs) to focus on the myocardial boundary structures, to segment LVM contours from CCTA. The deep attention U-Net (DAU-Net) was trained on the patients' CCTA images, with a manual contour-derived binary mask used as the learning-based target. The network was supervised by a hybrid loss function, which combined logistic loss and Dice loss to simultaneously measure the similarities and discrepancies between the prediction and training datasets. To evaluate the accuracy of the segmentation, we retrospectively investigated 100 patients with suspected or confirmed coronary artery disease (CAD). The LVM volume was segmented by the proposed method and compared with physician-approved clinical contours. Quantitative metrics used were Dice similarity coefficient (DSC), Hausdorff distance (HD), mean surface distance (MSD), residual mean square distance (RMSD), the center of mass distance (CMD), and volume difference (VOD). RESULTS: The proposed method created contours with very good agreement to the ground truth contours. Our proposed segmentation approach is benchmarked primarily using fivefold cross validation. Model prediction correlated and agreed well with manual contour. The mean DSC of the contours delineated by our method was 91.6% among all patients. The resultant HD was 6.840 ± 4.410 mm. The proposed method also resulted in a small CMD (1.058 ± 1.245 mm) and VOD (1.640 ± 1.777 cc). Among all patients, the MSD and RMSD were 0.433 ± 0.209 mm and 0.724 ± 0.375 mm, respectively, between ground truth and LVM volume resulting from the proposed method. CONCLUSIONS: We developed a novel deep learning-based approach for the automated segmentation of the LVM on CCTA images. We demonstrated the high accuracy of the proposed learning-based segmentation method through comparison with ground truth contour of 100 clinical patient cases using six quantitative metrics. These results show the potential of using automated LVM segmentation for computer-aided delineation of CADs in the clinical setting.

摘要

目的:在冠状动脉计算机断层血管造影术(CCTA)中分割左心室心肌(LVM)对于心血管疾病的诊断很重要。由于图像对比度差,强度和形状变化大,因此 CCTA 中的 LVM 分割是一项具有挑战性的任务。本研究旨在开发一种基于区域的深度学习方法,仅基于 CCTA 图像自动检测和分割 LVM。

方法:我们开发了一种 3D 深度监督 U-Net,该网络结合了注意力门(AG)以专注于心肌边界结构,从而从 CCTA 中分割 LVM 轮廓。基于深度学习的 U-Net(DAU-Net)在患者的 CCTA 图像上进行了训练,使用手动轮廓生成的二进制掩模作为学习目标。该网络由混合损失函数进行监督,该函数结合了逻辑损失和 Dice 损失,以同时测量预测数据集和训练数据集之间的相似性和差异。为了评估分割的准确性,我们回顾性地研究了 100 名疑似或确诊为冠状动脉疾病(CAD)的患者。使用所提出的方法对 LVM 体积进行分割,并与医师批准的临床轮廓进行比较。使用的定量指标包括 Dice 相似系数(DSC),Hausdorff 距离(HD),平均表面距离(MSD),残差均方距离(RMSD),质心距离(CMD)和体积差(VOD)。

结果:所提出的方法创建的轮廓与真实轮廓非常吻合。我们提出的分割方法主要通过五折交叉验证进行基准测试。模型预测与手动轮廓相关且吻合良好。在所有患者中,我们方法所描绘的轮廓的平均 DSC 为 91.6%。所得的 HD 为 6.840±4.410mm。该方法还产生了较小的 CMD(1.058±1.245mm)和 VOD(1.640±1.777cc)。在所有患者中,在与所提出的方法产生的地面真实 LVM 体积之间,MSD 和 RMSD 分别为 0.433±0.209mm 和 0.724±0.375mm。

结论:我们开发了一种基于深度学习的新方法,用于自动分割 CCTA 图像上的 LVM。通过使用六种定量指标,与 100 例临床患者的真实轮廓进行比较,我们证明了所提出的基于学习的分割方法的高精度。这些结果表明,在临床环境中,使用自动 LVM 分割来辅助 CAD 的计算机辅助描绘具有潜力。

相似文献

[1]
Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.

Med Phys. 2020-4

[2]
Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography.

Phys Med Biol. 2020-5-11

[3]
The auto segmentation for cardiac structures using a dual-input deep learning network based on vision saliency and transformer.

J Appl Clin Med Phys. 2022-5

[4]
Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery.

Med Phys. 2019-5-21

[5]
Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net.

Med Phys. 2019-5-29

[6]
Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.

Med Phys. 2020-10

[7]
Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study.

Eur Radiol. 2021-6

[8]
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.

Med Phys. 2021-11

[9]
Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi-planar U-Net (CMPU-Net).

Med Phys. 2020-4

[10]
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.

Med Phys. 2020-6

引用本文的文献

[1]
Performance of artificial intelligence in detecting the chronic total occlusive lesions of coronary artery based on coronary computed tomographic angiography.

Cardiovasc Diagn Ther. 2024-8-31

[2]
Advancements in cardiac structures segmentation: a comprehensive systematic review of deep learning in CT imaging.

Front Cardiovasc Med. 2024-1-22

[3]
Deep Learning Paradigm and Its Bias for Coronary Artery Wall Segmentation in Intravascular Ultrasound Scans: A Closer Look.

J Cardiovasc Dev Dis. 2023-12-4

[4]
Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review.

Diagnostics (Basel). 2022-10-17

[5]
Correlation between quantification of myocardial area at risk and ischemic burden at cardiac computed tomography.

Eur J Radiol Open. 2022-3-31

[6]
Attention-guided duplex adversarial U-net for pancreatic segmentation from computed tomography images.

J Appl Clin Med Phys. 2022-4

[7]
A review of deep learning based methods for medical image multi-organ segmentation.

Phys Med. 2021-5

[8]
Artificial intelligence in cardiovascular CT: Current status and future implications.

J Cardiovasc Comput Tomogr. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索