Suppr超能文献

基于注意力引导的双路对抗 U-Net 用于 CT 图像胰腺分割。

Attention-guided duplex adversarial U-net for pancreatic segmentation from computed tomography images.

机构信息

College of Electronic Science and Engineering, Jilin University, Changchun, China.

School of Aviation Operations and Services, Air Force Aviation University, Changchun, China.

出版信息

J Appl Clin Med Phys. 2022 Apr;23(4):e13537. doi: 10.1002/acm2.13537. Epub 2022 Feb 24.

Abstract

PURPOSE

Segmenting the organs from computed tomography (CT) images is crucial to early diagnosis and treatment. Pancreas segmentation is especially challenging because the pancreas has a small volume and a large variation in shape.

METHODS

To mitigate this issue, an attention-guided duplex adversarial U-Net (ADAU-Net) for pancreas segmentation is proposed in this work. First, two adversarial networks are integrated into the baseline U-Net to ensure the obtained prediction maps resemble the ground truths. Then, attention blocks are applied to preserve much contextual information for segmentation. The implementation of the proposed ADAU-Net consists of two steps: 1) backbone segmentor selection scheme is introduced to select an optimal backbone segmentor from three two-dimensional segmentation model variants based on a conventional U-Net and 2) attention blocks are integrated into the backbone segmentor at several locations to enhance the interdependency among pixels for a better segmentation performance, and the optimal structure is selected as a final version.

RESULTS

The experimental results on the National Institutes of Health Pancreas-CT dataset show that our proposed ADAU-Net outperforms the baseline segmentation network by 6.39% in dice similarity coefficient and obtains a competitive performance compared with the-state-of-art methods for pancreas segmentation.

CONCLUSION

The ADAU-Net achieves satisfactory segmentation results on the public pancreas dataset, indicating that the proposed model can segment pancreas outlines from CT images accurately.

摘要

目的

从计算机断层扫描 (CT) 图像中分割器官对于早期诊断和治疗至关重要。胰腺分割特别具有挑战性,因为胰腺体积小,形状变化大。

方法

为了解决这个问题,本文提出了一种用于胰腺分割的注意力引导双路对抗 U-Net (ADAU-Net)。首先,将两个对抗网络集成到基线 U-Net 中,以确保获得的预测图与地面真实情况相似。然后,应用注意力块来保留更多的上下文信息进行分割。所提出的 ADAU-Net 的实现包括两个步骤:1)骨干分割器选择方案,根据传统的 U-Net 从三个二维分割模型变体中选择最佳骨干分割器,2)在几个位置将注意力块集成到骨干分割器中,以增强像素之间的相互依赖性,从而获得更好的分割性能,并选择最佳结构作为最终版本。

结果

在 NIH 胰腺 CT 数据集上的实验结果表明,与基线分割网络相比,所提出的 ADAU-Net 在骰子相似系数上提高了 6.39%,并且与胰腺分割的最新方法相比具有竞争力。

结论

ADAU-Net 在公共胰腺数据集上取得了令人满意的分割结果,表明所提出的模型可以准确地从 CT 图像中分割胰腺轮廓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04bd/8992955/3fdfa0ce4958/ACM2-23-e13537-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验