Suppr超能文献

甲氨蝶呤使用障碍的小胶质细胞成像:使用 18 kDa 转位蛋白放射性配体 [F-18]FEPPA 的正电子发射断层扫描研究。

Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA.

机构信息

Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.

Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.

出版信息

Addict Biol. 2021 Jan;26(1):e12876. doi: 10.1111/adb.12876. Epub 2020 Feb 4.

Abstract

Activation of brain microglial cells, microgliosis, has been linked to methamphetamine (MA)-seeking behavior, suggesting that microglia could be a new therapeutic target for MA use disorder. Animal data show marked brain microglial activation following acute high-dose MA, but microglial status in human MA users is uncertain, with one positron emission tomography (PET) investigation reporting massively and globally increased translocator protein 18 kDa (TSPO; C-11-PK11195) binding, a biomarker for microgliosis, in MA users. Our aim was to measure binding of a second-generation TSPO radioligand, [F-18]FEPPA, in brain of human chronic MA users. Regional total volume of distribution (V ) of [F-18]FEPPA was estimated with a two-tissue compartment model with arterial plasma input function for 10 regions of interest in 11 actively using MA users and 26 controls. A RM-ANOVA corrected for TSPO rs6971 polymorphism was employed to test significance. There was no main effect of group on [F-18]FEPPA V (P = .81). No significant correlations between [F-18]FEPPA V and MA use duration, weekly dosage, blood MA concentrations, regional brain volumes, and self-reported craving were observed. Our preliminary findings, consistent with our earlier postmortem data, do not suggest substantial brain microgliosis in MA use disorder but do not rule out microglia as a therapeutic target in MA addiction. Absence of increased [F-18]FEPPA TSPO binding might be related to insufficient MA dose or blunting of microglial response following repeated MA exposure, as suggested by some animal data.

摘要

脑小胶质细胞的激活,小胶质细胞增生,与甲基苯丙胺(MA)觅药行为有关,这表明小胶质细胞可能成为治疗 MA 使用障碍的新靶点。动物研究数据显示,急性大剂量 MA 后大脑小胶质细胞明显激活,但人类 MA 使用者的小胶质细胞状态不确定,一项正电子发射断层扫描(PET)研究报告称,MA 使用者的转位蛋白 18 kDa(TSPO;[C-11](R)-PK11195)结合物,即小胶质细胞增生的生物标志物,大量且广泛增加。我们的目的是测量第二代 TSPO 放射性配体[F-18]FEPPA 在人类慢性 MA 使用者大脑中的结合情况。使用双组织室模型和动脉血浆输入函数,对 11 名正在使用 MA 的患者和 26 名对照者的 10 个感兴趣区域的[F-18]FEPPA 的区域总分布容积(V)进行了估计。采用 RM-ANOVA 校正 TSPO rs6971 多态性来检验显著性。组间[F-18]FEPPA V 无主效应(P=0.81)。未观察到[F-18]FEPPA V 与 MA 使用持续时间、每周剂量、血液 MA 浓度、脑区体积和自我报告的渴望之间存在显著相关性。我们的初步发现与我们之前的尸检数据一致,不支持 MA 使用障碍存在大量脑小胶质细胞增生,但不能排除 MA 成瘾中小胶质细胞作为治疗靶点的可能性。缺乏增加的[F-18]FEPPA TSPO 结合可能与 MA 剂量不足或重复 MA 暴露后小胶质细胞反应迟钝有关,这与一些动物数据一致。

相似文献

2
Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA.
Neuroimage. 2014 Jan 1;84:868-75. doi: 10.1016/j.neuroimage.2013.09.021. Epub 2013 Sep 21.
3
Imaging Microglial Activation in Individuals at Clinical High Risk for Psychosis: an In Vivo PET Study with [F]FEPPA.
Neuropsychopharmacology. 2017 Dec;42(13):2474-2481. doi: 10.1038/npp.2017.111. Epub 2017 Jun 12.
4
Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [F]FEPPA.
Am J Psychiatry. 2017 Feb 1;174(2):118-124. doi: 10.1176/appi.ajp.2016.16020171. Epub 2016 Sep 9.
5
Imaging neuroinflammation in gray and white matter in schizophrenia: an in-vivo PET study with [18F]-FEPPA.
Schizophr Bull. 2015 Jan;41(1):85-93. doi: 10.1093/schbul/sbu157. Epub 2014 Nov 9.
7
Microglial activation in Parkinson's disease using [F]-FEPPA.
J Neuroinflammation. 2017 Jan 11;14(1):8. doi: 10.1186/s12974-016-0778-1.
8
Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [(18)F]-FEPPA.
J Cereb Blood Flow Metab. 2012 Jun;32(6):968-72. doi: 10.1038/jcbfm.2012.46. Epub 2012 Apr 4.
10
In vivo imaging translocator protein (TSPO) in autism spectrum disorder.
Neuropsychopharmacology. 2022 Jun;47(7):1421-1427. doi: 10.1038/s41386-022-01306-4. Epub 2022 Apr 5.

引用本文的文献

1
Therapeutic targeting of neuroinflammation in methamphetamine use disorder.
Future Med Chem. 2025 Jan;17(2):237-257. doi: 10.1080/17568919.2024.2447226. Epub 2024 Dec 27.
2
Imaging neuroinflammation in individuals with substance use disorders.
J Clin Invest. 2024 Jun 3;134(11):e172884. doi: 10.1172/JCI172884.
3
The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse.
Curr Neuropharmacol. 2024;22(13):2113-2156. doi: 10.2174/1570159X21666230907151226.
4
Investigating TSPO levels in occupation-related posttraumatic stress disorder.
Sci Rep. 2023 Mar 27;13(1):4970. doi: 10.1038/s41598-023-31327-y.
5
Challenges and future trends in wearable closed-loop neuromodulation to efficiently treat methamphetamine addiction.
Front Psychiatry. 2023 Feb 23;14:1085036. doi: 10.3389/fpsyt.2023.1085036. eCollection 2023.
7
Role of Microglia in Psychostimulant Addiction.
Curr Neuropharmacol. 2023;21(2):235-259. doi: 10.2174/1570159X21666221208142151.
8
Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica.
Front Med (Lausanne). 2022 Jun 6;9:902155. doi: 10.3389/fmed.2022.902155. eCollection 2022.
9
In vivo imaging translocator protein (TSPO) in autism spectrum disorder.
Neuropsychopharmacology. 2022 Jun;47(7):1421-1427. doi: 10.1038/s41386-022-01306-4. Epub 2022 Apr 5.
10
Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders.
Eur J Nucl Med Mol Imaging. 2021 Dec;49(1):186-200. doi: 10.1007/s00259-021-05408-x. Epub 2021 May 27.

本文引用的文献

1
In Vivo Imaging of Translocator Protein in Long-term Cannabis Users.
JAMA Psychiatry. 2019 Dec 1;76(12):1305-1313. doi: 10.1001/jamapsychiatry.2019.2516.
2
Effects of age, BMI and sex on the glial cell marker TSPO - a multicentre [C]PBR28 HRRT PET study.
Eur J Nucl Med Mol Imaging. 2019 Oct;46(11):2329-2338. doi: 10.1007/s00259-019-04403-7. Epub 2019 Jul 30.
4
Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: Implications for brain imaging studies.
J Cereb Blood Flow Metab. 2020 May;40(5):1061-1076. doi: 10.1177/0271678X19858003. Epub 2019 Jun 20.
5
PET Evaluation of Microglial Activation in Non-neurodegenerative Brain Diseases.
Curr Neurol Neurosci Rep. 2019 May 28;19(7):38. doi: 10.1007/s11910-019-0951-x.
6
Effect of overnight smoking abstinence on a marker for microglial activation: a [C]DAA1106 positron emission tomography study.
Psychopharmacology (Berl). 2018 Dec;235(12):3525-3534. doi: 10.1007/s00213-018-5077-3. Epub 2018 Oct 20.
7
TSPO expression and brain structure in the psychosis spectrum.
Brain Behav Immun. 2018 Nov;74:79-85. doi: 10.1016/j.bbi.2018.06.009. Epub 2018 Jun 12.
9
Imaging Microglial Activation in Individuals at Clinical High Risk for Psychosis: an In Vivo PET Study with [F]FEPPA.
Neuropsychopharmacology. 2017 Dec;42(13):2474-2481. doi: 10.1038/npp.2017.111. Epub 2017 Jun 12.
10
Pharmacotherapeutic agents in the treatment of methamphetamine dependence.
Expert Opin Investig Drugs. 2017 May;26(5):563-578. doi: 10.1080/13543784.2017.1313229. Epub 2017 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验