Suppr超能文献

同位素和地球化学信号在非常规油气藏产出水中的应用,用于表征原地地球化学流体-页岩反应。

Application of isotopic and geochemical signals in unconventional oil and gas reservoir produced waters toward characterizing in situ geochemical fluid-shale reactions.

机构信息

National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA; Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA.

出版信息

Sci Total Environ. 2020 Apr 20;714:136867. doi: 10.1016/j.scitotenv.2020.136867. Epub 2020 Jan 23.

Abstract

Optimizing hydrocarbon production and waste management from unconventional oil and gas extraction requires an understanding of the fluid-rock chemical interactions. These reactions can affect flow pathways within fractured shale and produced water chemistry. Knowledge of these chemical reactions also provides valuable information for planning wastewater treatment strategies. This study focused on characterizing reservoir reactions through analysis of produced water chemistry from the Marcellus Shale Energy and Environmental Laboratory field site in Morgantown, WV, USA. Analysis of fracturing fluids, time-series produced waters (PW) over 16 months of operation of two hydraulically fractured gas wells, and shale rocks from the same well for metal concentrations and multiple isotope signatures (δH and δO of water, δLi, δB, Sr/Sr) showed that the chemical and isotopic composition of early (<10 days) PW samples record water-rock interactions during the fracturing period. Acidic dissolution of carbonate minerals was evidenced by the increase in TOC, B/Na, Sr/Na, Ca/Na, and the decrease in Sr/Sr in PW returning in the first few days toward the Sr/Sr signature of carbonate cement. The enrichment of Li in these early (e.g., day 1) PW samples is most likely a result of desorption of Li from clays and organic matter due to the injection of fracturing fluid. Redox-active trace elements appear to be controlled by oxidation-reduction reactions and potentially reactions involving wellbore steel. Overall, PW chemistry is primarily controlled by mixing between early PW with local in-situ formation water however certain geochemical reactions (e.g., carbonate cement dissolution and desorption of Li from clays and organic matter) can be inferred from PW composition monitored immediately over the first ten days of water return.

摘要

优化非常规油气开采中的烃类生产和废物管理需要了解流体-岩石化学相互作用。这些反应会影响裂缝性页岩中的流动路径和产出水的化学性质。了解这些化学反应还为规划废水处理策略提供了有价值的信息。本研究通过分析美国西弗吉尼亚州摩根敦的马塞勒斯页岩能源与环境实验室现场的产出水化学,重点研究了储层反应。对压裂液、两口水力压裂气井运行 16 个月的时间序列产出水(PW)以及来自同一口井的页岩岩心进行了金属浓度和多种同位素特征(水的δH 和 δO、δLi、δB、Sr/Sr)分析,结果表明早期(<10 天)PW 样品的化学和同位素组成记录了压裂期间的水-岩相互作用。碳酸盐矿物的酸性溶解由 TOC、B/Na、Sr/Na、Ca/Na 的增加和 Sr/Sr 的降低证实,这些物质在最初几天内返回到碳酸盐胶结物的 Sr/Sr 特征。这些早期(例如第 1 天)PW 样品中 Li 的富集很可能是由于压裂液注入导致粘土和有机质中 Li 的解吸。痕量活性元素似乎受氧化还原反应和可能涉及井筒钢的反应控制。总体而言,PW 化学性质主要受早期 PW 与当地原地形成水之间的混合控制,但某些地球化学反应(例如碳酸盐胶结物溶解和粘土及有机质中 Li 的解吸)可以从最初 10 天回注水期间监测到的 PW 组成中推断出来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验