Suppr超能文献

一种在无线局域网指纹定位系统中融合自适应局部线性嵌入(LLE)和基于图的标签传播的快速无线电地图构建方法。

A Fast Radio Map Construction Method Merging Self-Adaptive Local Linear Embedding (LLE) and Graph-Based Label Propagation in WLAN Fingerprint Localization Systems.

作者信息

Ni Yepeng, Chai Jianping, Wang Yan, Fang Weidong

机构信息

School of Data Science and Media Intelligence, Communication University of China, No.1 Dingfuzhuang East Street, Chaoyang District, Beijing 100024, China.

Key Laboratory of Wireless Sensor Network & Communication, Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China.

出版信息

Sensors (Basel). 2020 Jan 30;20(3):767. doi: 10.3390/s20030767.

Abstract

Indoor WLAN fingerprint localization systems have been widely applied due to the simplicity of implementation on various mobile devices, including smartphones. However, collecting received signal strength indication (RSSI) samples for the fingerprint database, named a radio map, is significantly labor-intensive and time-consuming. To solve the problem, this paper proposes a semi-supervised self-adaptive local linear embedding algorithm to build the radio map. First, this method uses the self-adaptive local linear embedding (SLLE) algorithm based on manifold learning to reduce the dimension of the high-dimensional RSSI samples and to extract a neighbor weight matrix. Secondly, a graph-based label propagation (GLP) algorithm is employed to build the radio map by semi-supervised learning from a large number of unlabeled RSSI samples to a few labeled RSSI samples. Finally, we propose a self-adaptive neighbor weight (kSNW) algorithm, used for radio map construction in this paper, to realize online localization. The results of the experiments conducted in a real indoor environment show that the proposed method reduces the demand for large quantities of labeled samples and achieves good positioning accuracy. With only 25% labeled RSSI samples, our system can obtain positioning accuracy of more than 88%, within 3 m of localization errors.

摘要

室内无线局域网(WLAN)指纹定位系统因其在包括智能手机在内的各种移动设备上易于实现而得到广泛应用。然而,为指纹数据库(即无线电地图)收集接收信号强度指示(RSSI)样本的工作非常耗费人力和时间。为解决该问题,本文提出一种半监督自适应局部线性嵌入算法来构建无线电地图。首先,该方法使用基于流形学习的自适应局部线性嵌入(SLLE)算法来降低高维RSSI样本的维度并提取邻域权重矩阵。其次,采用基于图的标签传播(GLP)算法,通过从大量未标记的RSSI样本到少量标记的RSSI样本进行半监督学习来构建无线电地图。最后,我们提出一种自适应邻域权重(kSNW)算法,用于本文中的无线电地图构建,以实现在线定位。在真实室内环境中进行的实验结果表明,所提方法减少了对大量标记样本的需求,并实现了良好的定位精度。仅使用25%的标记RSSI样本,我们的系统就能在3米定位误差范围内获得超过88%的定位精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b56f/7038483/1089bc523a0d/sensors-20-00767-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验